REFERENCES
1. Weidenthaler C, Felderhoff M. Solid-state hydrogen storage for mobile applications: Quo Vadis? Energy Environ Sci 2011;4:2495.
3. Lang C, Jia Y, Yao X. Recent advances in liquid-phase chemical hydrogen storage. Energy Stor Mater 2020;26:290-312.
4. Schlapbach L and Züttel A. Hydrogen-storage materials for mobile applications. Nature 2001;414:353-8.
5. Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G. Hydrogen storage: beyond conventional methods. Chem Commun (Camb) 2013;49:8735-51.
6. Chen Z, Kirlikovali KO, Idrees KB, Wasson MC, Farha OK. Porous materials for hydrogen storage. Chem 2022; doi: 10.1016/j.chempr.2022.01.012.
7. Li Y, Xiao Y, Dong H, Zheng M, Liu Y. Polyacrylonitrile-based highly porous carbon materials for exceptional hydrogen storage. Int J Hydrogen Energy 2019;44:23210-5.
8. Blankenship LS, Balahmar N, Mokaya R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat Commun 2017;8:1545.
10. Sun G, Tangpanitanon J, Shen H, et al. Physisorption of molecular hydrogen on carbon nanotube with vacant defects. J Chem Phys 2014;140:204712.
11. Panchariya DK, Rai RK, Anil Kumar E, Singh SK. Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage. ACS Omega 2018;3:167-75.
12. Lee S, Lee J, Kim Y, Kim J, Lee K, Park S. Recent progress using solid-state materials for hydrogen storage: a short review. Processes 2022;10:304.
13. Shayeganfar F, Shahsavari R. Oxygen- and lithium-doped hybrid boron-nitride/carbon networks for hydrogen storage. Langmuir 2016;32:13313-21.
14. Yu H, Bennici S, Auroux A. Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. Int J Hydrogen Energy 2014;39:11633-41.
15. Zhang J, Li Z, Wu Y, et al. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv 2019;9:408-28.
16. Luo Q, Li J, Li B, Liu B, Shao H, Li Q. Kinetics in Mg-based hydrogen storage materials: enhancement and mechanism. J Magnes Alloy 2019;7:58-71.
17. Cao Z, Ouyang L, Wu Y, et al. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling. J Alloys Compd 2015;623:354-8.
18. Konarova M, Tanksale A, Norberto Beltramini J, Qing Lu G. Effects of nano-confinement on the hydrogen desorption properties of MgH2. Nano Energy 2013;2:98-104.
19. Martelli P, Caputo R, Remhof A, Mauron P, Borgschulte A, Züttel A. Stability and decomposition of NaBH4. J Phys Chem C 2010;114:7173-7.
20. Urgnani J, Torres F, Palumbo M, Baricco M. Hydrogen release from solid state NaBH4. Int J Hydrogen Energy 2008;33:3111-5.
21. Mao J, Yu X, Guo Z, Liu H, Wu Z, Ni J. Enhanced hydrogen storage performances of NaBH4-MgH2 system. J Alloys Compd 2009;479:619-23.
22. García-holley P, Schweitzer B, Islamoglu T, et al. Benchmark study of hydrogen storage in metal-organic frameworks under temperature and pressure swing conditions. ACS Energy Lett 2018;3:748-54.
23. Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ. Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand. J Am Chem Soc 1984;106:451-2.
25. Mrtensson A, Nyberg C, Andersson S. Observation of molecular H2 chemisorption on a nickel surface. Phys Rev Lett 1986;57:2045-8.
26. Berwanger J, Polesya S, Mankovsky S, Ebert H, Giessibl FJ. Atomically resolved chemical reactivity of small Fe clusters. Phys Rev Lett 2020;124:096001.
27. Vitillo JG, Regli L, Chavan S, et al. Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 2008;130:8386-96.
28. Zhou W, Yildirim T. Nature and tunability of enhanced hydrogen binding in metal-organic frameworks with exposed transition metal sites. J Phys Chem C 2008;112:8132-5.
29. Liu Y, Su B, Dong W, Li ZH, Wang H. Structural characterization of a boron(III) η2-σ-silane-complex. J Am Chem Soc 2019;141:8358-63.
30. Niu J, Rao BK, Jena P. Binding of hydrogen molecules by a transition-metal ion. Phys Rev Lett 1992;68:2277-80.
31. Zhang B, Asakura H, Zhang J, Zhang J, De S, Yan N. Stabilizing a Platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem 2016;128:8459-63.
32. Zhang L, Fischer JMTA, Jia Y, et al. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J Am Chem Soc 2018;140:10757-63.
33. Hammer B, Nørskov J. Theoretical surface science and catalysis-calculations and concepts. Impact of Surface Science on Catalysis. Elsevier; 2000. pp. 71-129.
34. Hamaed A, Trudeau M, Antonelli DM. H2 storage materials (22 KJ/mol) using organometallic Ti fragments as sigma-H2 binding sites. J Am Chem Soc 2008;130:6992-9.
35. Hoang TKA, Hamaed A, Trudeau M, Antonelli DM. Bis(benzene) and Bis(cyclopentadienyl) V and Cr doped mesoporous silica with high enthalpies of hydrogen adsorption. J Phys Chem C 2009;113:17240-6.
36. Xu G, Pareek K, Li N, Cheng H. High capacity hydrogen storage at room temperature via physisorption in a coordinatively unsaturated iron complex. Int J Hydrogen Energy 2015;40:16330-7.
37. Hoang TK, Hamaed A, Moula G, Aroca R, Trudeau M, Antonelli DM. Kubas-type hydrogen storage in V(III) polymers using tri- and tetradentate bridging ligands. J Am Chem Soc 2011;133:4955-64.
38. Hoang TK, Webb MI, Mai HV, et al. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials. J Am Chem Soc 2010;132:11792-8.
39. Skipper CVJ, Antonelli DM, Kaltsoyannis N. Are metal-metal interactions involved in the rising enthalpies observed in the Kubas binding of H2 to hydrazine-linked hydrogen storage materials? J Phys Chem C 2012;116:19134-44.
40. Zhang L, Jia Y, Gao G, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018;4:285-97.
41. Yang Q, Jia Y, Wei F, et al. Understanding the Activity of Co-N4-xCx in atomic metal catalysts for oxygen reduction catalysis. Angew Chem 2020;132:6178-83.
42. Tao L, Wang Q, Dou S, et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem Commun (Camb) 2016;52:2764-7.
43. Zhu X, Zhang D, Chen C, et al. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020;71:104597.
44. Zhuang L, Jia Y, Liu H, et al. Defect-Induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv Mater 2019;31:e1805581.
45. Wang X, Zhang Y, Si H, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J Am Chem Soc 2020;142:4298-308.
46. Xiong P, Zhang X, Zhang F, et al. Two-dimensional unilamellar cation-deficient metal oxide nanosheet superlattices for high-rate sodium ion energy storage. ACS Nano 2018;12:12337-46.
47. Liu B, Wang Y, Peng HQ, et al. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv Mater 2018:e1803144.
48. Dou Y, He CT, Zhang L, et al. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nat Commun 2020;11:1664.