REFERENCES

1. Leyva-Mayorga I, Soret B, Röper M, Wübben D, Matthiesen B, Dekorsy M. LEO small-satellite constellations for 5G and beyond-5G communications. IEEE Access. 2020;8:184955-64.

2. Srivastava R, Sah R, Das K. Attitude determination and control system for a leo debris chaser small satellite. San Diego, CA: AIAA SCITECH; 2022. p. 0519.

3. Reid TGR, Chan B, Goel A, Gunning K, Manning B, Martin J. Satellite navigation for the age of autonomy. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS); 20-23 April 2020; Portland, OR, USA. pp. 342-52.

4. Chaudhry AU, Yanikomeroglu H. Laser intersatellite links in a starlink constellation: a classification and analysis. IEEE Veh Technol Mag. 2021;16:48-56.

5. Scharf DP, Hadaegh FY, Ploen SR. A survey of spacecraft formation flying guidance and control (part 1): guidance. In Proceedings of the 2003 American Control Conference; 4-6 June 2003; Denver, CO, USA. pp. 1733-39.

6. Du H, Chen MZQ, Wen G. Leader–following attitude consensus for spacecraft formation with rigid and flexible spacecraft. J Guid Control Dynam. 2016;39:944-51.

7. Wang PKC, Hadaegh FY. Minimum-fuel formation reconfiguration of multiple free-flying spacecraft. J Astronaut Sci. 1999;47:77-102.

8. Essghaier A, Beji L, El Kamel MA, Abichou A, Lerbet J. Co-leaders and a flexible virtual structure based formation motion control. Int J Veh Auton Syst. 2011;9:108-25.

9. Guo S, Pan Y, Li H, Cao L. Dynamic event-driven ADP for N-player nonzero-sum games of constrained nonlinear systems. IEEE Trans Autom Sci Eng. 2024:1-13.

10. Huang Y, Jia Y. Adaptive finite-time 6-DOF tracking control for spacecraft fly around with input saturation and state constraints. IEEE Trans Aerosp Electron Syst. 2019;55:3259-72.

11. Beard RW, Lawton J, Hadaegh FY. A coordination architecture for spacecraft formation control. IEEE Trans Control Syst Technol. 2001;9:777-90.

12. Pola G, Pepe P, Di Benedetto MD. Decentralized supervisory control of networks of nonlinear control systems. IEEE Trans Autom Control. 2017;63:2803-17.

13. Low CB. Adaptable virtual structure formation tracking control design for nonholonomic tracked mobile robots, with experiments. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems; 15-18 September 2015; Gran Canaria, Spain. pp. 1868-75.

14. Yang A, Naeem W, Irwin GW, Li K. Stability analysis and implementation of a decentralized formation control strategy for unmanned vehicles. IEEE Trans Control Syst Technol. 2013;22:706-20.

15. Chang YH, Chang CW, Chen CL, Tao CW. Fuzzy sliding-mode formation control for multirobot systems: design and implementation. IEEE Trans Syst Man Cyber Part B. 2011;42:444-57.

16. Liu X, Ge SS, Goh CH, Li Y. Event-triggered coordination for formation tracking control in constrained space with limited communication. IEEE Trans Cyber. 2018;49:1000-11.

17. Liu X, Kumar KD. Network-based tracking control of spacecraft formation flying with communication delays. IEEE Trans Aerosp Electron Syst. 2012;48:2302-14.

18. Shui A, Chen W, Zhang P, Hu S, Huang X. Review of fault diagnosis in control systems. In Proceedings of the 2009 Chinese Control and Decision Conference; 17-19 June 2009; Guilin, China. pp. 5324-29.

19. Harshavarthini S, Sakthivel R, Ahn CK. Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults. Nonlinear Dyn. 2019;96:2681-92.

20. Saha RK. Spectrum sharing in satellite-mobile multisystem using 3D in-building small cells for high spectral and energy efficiencies in 5G and beyond era. IEEE Access. 2019;7:43846-68.

21. Zhang Z, Shi Y, Zhang Z, Zhang H, Bi S. Modified order-reduction method for distributed control of multi-spacecraft networks with time-varying delays. IEEE Trans Control Netw Syst. 2016;5:79-92.

22. Razzaghi P, Assadian N. Study of the triple-mass tethered satellite system under aerodynamic drag and J$$_{2}$$ perturbations. Adv Space Res. 2015;56:2141-50.

23. Vijayan R, Bilal M, Schilling K. Nonlinear dynamic modeling of satellite relative motion with differential J$$_{2}$$ and drag. In Proceedings of the 2020 IEEE Aerospace Conference; 7-14 March 2020; Big Sky, MT, USA. pp. 1-8.

24. Chen BS, Ma YS, Lee MY. Stochastic robust $$H_\infty$$ decentralized network formation tracking control of large-scale team satellites via event-triggered mechanism. IEEE Access. 2022;10:62011-36.

25. Chen BS, Lin HY. Decentralized $$H_\infty$$ observer-based attack-tolerant formation tracking network control of large-scale LEO satellites via HJIE-reinforced deep learning approach. IEEE Access. 2023;11:17165-96.

26. Chen W, Hu Q, Guo L. Relative position fixed-time tracking control of spacecraft. In Proceedings of the 2017 36th Chinese Control Conference (CCC); 26-28 July 2017; Dalian, China. pp. 9466-71.

27. Feng G. A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Syst. 2006;14:676-97.

28. Amoozgar MH, Chamseddine A, Zhang Y. Fault-tolerant fuzzy gain-scheduled PID for a quadrotor helicopter testbed in the presence of actuator faults. IFAC Proc Vol. 2012;45:282-7.

29. Goodarzi F, Lee D, Lee T. Geometric nonlinear PID control of a quadrotor UAV on SE(3). In Proceedings of the 2013 European control conference (ECC); 17-19 July 2013; Zurich, Switzerland. pp. 3845-50.

30. Alaimo A, Artale V, Milazzo CLR, Ricciardello A. PID controller applied to hexacopter flight. J Intell Robot Syst. 2014;73:261-70.

31. Kada B, Ghazzawi Y. Robust PID controller design for an UAV flight control system. In Proceedings of the World Congress on Engineering and Computer Science; 19-21 October 2011; San Francisco, USA. pp. 1-6. Available from: https://www.iaeng.org/publication/WCECS2011/WCECS2011_pp945-950.pdf[Last accessed on 31 Dec 2024].

32. Moreno-Valenzuela J, Pérez-Alcocer R, Guerrero-Medina M, Dzul A. Nonlinear PID-type controller for quadrotor trajectory tracking. IEEE/ASME Trans Mech. 2018;23:2436-47.

33. Nishiyama T, Suzuki S, Sato M, Masui K. Simple adaptive control with PID for MIMO fault tolerant flight control design. San Diego, CA: AIAA Infotech@Aerospace; 2016. p. 0132.

34. Gonzalez H, Arizmendi C, Garcia J, Anguo A, Herrera C. Design and experimental validation of adaptive fuzzy PID controller for a three degrees of freedom helicopter. In Proceedings of the 2018 IEEE International Conference On Fuzzy Systems (FUZZ-IEEE); 8-13 July 2018; Rio de Janeiro, Brazil. pp. 1-6.

35. Wang D, Wu B, Poh EK. Satellite formation flying: relative dynamics, formation design, fuel optimal maneuvers and formation maintenance. Springer; 2017. Available from: https://link.springer.com/book/10.1007/978-981-10-2383-5[Last accessed on 31 Dec 2024].

36. Bahrami S, Namvar M. Rigid body attitude control with delayed attitude measurement. IEEE Trans Control Syst Technol. 2015;23:1961-9.

37. Varga RS. Extrapolation methods: theory and practice. Numer Algor. 1993;3:305.

38. Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia, PA: SIAM; 1994.

39. VanAntwerp JG, Braatz RD. A tutorial on linear and bilinear matrix inequalities. J Proc Control. 2000;10:363-85.

40. Yang L, Hasna MO. Performance analysis of amplify-and-forward hybrid satellite-terrestrial networks with cochannel interference. IEEE Trans Commun. 2015;63:5052-61.

41. Ishijima Y, Inaba N, Matsumoto A, Terada K, Yonechi H, Ebisutani H. Design and development of the first Quasi-Zenith Satellite attitude and orbit control system. In Proceedings of the 2009 IEEE Aerospace Conference; 7-14 March 2009; Big Sky, MT, USA. pp. 1-8.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/