REFERENCES
1. Schumacher M, Wojtusch J, Beckerle P, von Stryk O. An introductory review of active compliant control. Robotics and Autonomous Systems 2019;119:185-200.
2. Lefebvre T, Xiao J, Bruyninckx H, De Gersem G. Active compliant motion: a survey. Advanced Robotics 2005;19:479-99.
3. Calanca A, Muradore R, Fiorini P. A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Trans Mechatron 2015;21:613-24.
4. Zhang T, Du Q, Yang G, et al. A review of compliant control for collaborative robots. In: 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA). IEEE; 2021. pp. 1103-8.
5. Hogan N. Impedance control: an approach to manipulation. In: 1984 American Control Conference; 1984. pp. 304-13.
6. Roveda L, Pedrocchi N, Tosatti LM. Exploiting impedance shaping approaches to overcome force overshoots in delicate interaction tasks. Int J Adv Robot Syst 2016;13:1729881416662771.
7. Roveda L, Pedrocchi N, Beschi M, Tosatti LM. High-accuracy robotized industrial assembly task control schema with force overshoots avoidance. Control Engineering Practice 2018;71:142-53.
8. Roveda L, Piga D. Robust state dependent riccati equation variable impedance control for robotic force-tracking tasks. Int J Intell Robot Appl 2020;4:507-19.
9. Hogan N. On the stability of manipulators performing contact tasks. IEEE J Robot Automat 1988;4:677-86.
10. Roveda L, Iannacci N, Vicentini F, et al. Optimal impedance force-tracking control design with impact formulation for interaction tasks. IEEE Robot Autom Lett 2016;1:130-36.
11. Schindlbeck C, Haddadin S. Unified passivity-based cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE; 2015. pp. 440-47.
12. Ott C, Mukherjee R, Nakamura Y. Unified impedance and admittance control. In: 2010 IEEE International Conference on Robotics and Automation; 2010. pp. 554-61.
13. Ott C, Mukherjee R, Nakamura Y. A hybrid system framework for unified impedance and admittance control. J Intell Robot Syst 2015;78:359-75.
14. Cavenago F, Voli L, Massari M. Adaptive hybrid system framework for unified impedance and admittance control. J Intell Robot Syst 2018;91:569-81.
15. Mei C, Yuan J, Guan R. Adaptive unified Impedance and Admittance control using online environment estimation. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO); 2018. pp. 1864-69.
16. Izadbakhsh A, Kheirkhahan P, Khorashadizadeh S. FAT-based robust adaptive control of electrically driven robots in interaction with environment. Robotica 2018;12;37:1-22.
17. Yang B, Zhai DH, Lyu W, Xia Y. Event-based hybrid impedance and admittance control. In: 2019 Chinese Control Conference (CCC); 2019. pp. 4596-601.
18. Fu L, Wu R, Zhao J. On the stability of maxwell model based impedance control and cartesian admittance control implementation. In: 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM); 2019. pp. 793-98.
19. Siciliano B, Villani L. Robot force control. vol. 540 Springer Science & Business Media; 2012.
20. Gaz C, Cognetti M, Oliva A, Robuffo Giordano P, De Luca A. Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot Autom Lett 2019;4:4147-54.
21. Roveda L, Vicentini F, Tosatti LM. Deformation-tracking impedance control in interaction with uncertain environments. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013. pp. 1992-97.
22. Roveda L, Shahid AA, Iannacci N, Piga D. Sensorless optimal interaction control exploiting environment stiffness estimation. IEEE Trans Contr Syst Technol 2022;30:218-33.
23. Xu Z, Li S, Zhou X, Zhou S, et al. Dynamic neural networks for motion-force control of redundant manipulators: an optimization perspective. IEEE Trans Ind Electron 2021;68:1525-36.