REFERENCES

1. American Cancer Society. Cancer Statistics Center. Available from: https://cancerstatisticscenter.cancer.org/module/BmVYeqHT. [Last accessed on 19 Jun 2024].

2. Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer 2020;12:211-29.

3. Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother 2019;114:108800.

4. MacDonagh L, Gray SG, Breen E, et al. Lung cancer stem cells: the root of resistance. Cancer Lett 2016;372:147-56.

5. Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 2016;22:6876-89.

6. Nakazawa M, Paller C, Kyprianou N. Mechanisms of therapeutic resistance in prostate cancer. Curr Oncol Rep 2017;19:13.

7. Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat 2023;68:100962.

8. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019;575:299-309.

9. Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: clinical evidence. Drug Resist Updat 2019;47:100646.

10. Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers 2014;6:1769-92.

11. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013;13:714-26.

12. Gottesman MM, Robey RW, Ambudkar SV. New mechanisms of multidrug resistance: an introduction to the Cancer Drug Resistance special collection. Cancer Drug Resist 2023;6:590-5.

13. Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep 2020;72:1125-51.

14. Peltomäki P. Mutations and epimutations in the origin of cancer. Exp Cell Res 2012;318:299-310.

15. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002;53:615-27.

16. Goldie JH. Drug resistance in cancer: a perspective. Cancer Metastasis Rev 2001;20:63-8.

17. Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol 2013;4:28.

18. Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 2018;35:309-18.

19. Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer 2019;1872:188310.

20. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020;21:3233.

21. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019;2:141-60.

22. Su Z, Dong S, Zhao SC, et al. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat 2021;58:100777.

23. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med 2019;4:e10143.

24. Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022;12:3028-48.

25. Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today 2019;25:85-98.

26. Namiot ED, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Nanoparticles in clinical trials: analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int J Mol Sci 2023;24:787.

27. Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh-Hesary F. Nanodelivery systems: an efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023;12:18797-825.

28. Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019;6:434-69.

29. Tan C, Hosseini SF, Jafari SM. Cubosomes and hexosomes as novel nanocarriers for bioactive compounds. J Agric Food Chem 2022;70:1423-37.

30. Mendes LP, Sarisozen C, Luther E, Pan J, Torchilin VP. Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers. Drug Deliv 2019;26:443-58.

31. Quick J, Santos ND, Cheng MHY, et al. Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy. J Control Release 2022;349:174-83.

32. Tan T, Feng Y, Wang W, et al. Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer. Cancer Nano 2023;14:70.

33. Younis MA, Khalil IA, Abd Elwakil MM, Harashima H. A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells. Mol Pharm 2019;16:4031-44.

34. Chen Q, Wang Q, Wang Y, et al. Penetrating micelle for reversing immunosuppression and drug resistance in pancreatic cancer treatment. Small 2022;18:e2107712.

35. Joshi U, Filipczak N, Khan MM, Attia SA, Torchilin V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. Int J Pharm 2020;590:119915.

36. Lasa-Saracibar B, Estella-Hermoso de Mendoza A, Guada M, Dios-Vieitez C, Blanco-Prieto MJ. Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin Drug Deliv 2012;9:1245-61.

37. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 2013;65:1866-79.

38. Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, et al. Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life 2020;72:855-71.

39. Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021;329:624-44.

40. Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T 2017;42:742-55.

41. Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015;468:504-10.

42. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016;33:2373-87.

43. U.S. Food & Drug Administration. Considerations for drug products that contain nanomaterials. Available from: https://www.fda.gov/drugs/cder-small-business-industry-assistance-sbia/considerations-drug-products-contain-nanomaterials. [Last accessed on 19 Jun 2024].

44. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018;9:1050-74.

45. DeFrates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci 2018;19:1717.

46. Barenholz Y. Doxil® - the first FDA-approved nano-drug: lessons learned. J Control Release 2012;160:117-34.

47. Choi YH, Han HK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 2019;48:43-60.

48. D’Mello SR, Cruz CN, Chen ML, Kapoor M, Lee SL, Tyner KM. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol 2017;12:523-9.

49. Banala VT, Mukherjee D, Mahajan S, Singh PK. Chapter 20 - Current status of FDA-approved marketed nano drug products: regulatory considerations. In: Multifunctional Nanocarriers. Elsevier; 2022. pp. 501-21.

50. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine 2019;14:93-126.

51. National Cancer Institute. Cancer nano-therapies in the clinic and clinical trials. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments. [Last accessed on 19 Jun 2024].

52. Jia Y, Jiang Y, He Y, et al. Approved nanomedicine against diseases. Pharmaceutics 2023;15:774.

53. Rodríguez F, Caruana P, De la Fuente N, et al. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules 2022;12:784.

54. Halwani AA. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics 2022;14:106.

55. Fraguas-Sanchez AI, Martin-Sabroso C, Fernandez-Carballido A, Torres-Suarez AI. Chapter 4 - Current status of nanomedicine for breast cancer treatment. In: Targeted Nanomedicine for Breast Cancer Therapy. 2022. pp. 65-110.

56. Fraguas-Sánchez AI, Lozza I, Torres-Suárez AI. Actively targeted nanomedicines in breast cancer: from pre-clinal investigation to clinic. Cancers 2022;14:1198.

57. Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release 2020;318:256-63.

58. Madaan A, Singh P, Awasthi A, et al. Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel(TM). Clin Transl Oncol 2013;15:26-32.

59. Sofias AM, Dunne M, Storm G, Allen C. The battle of “nano” paclitaxel. Adv Drug Deliv Rev 2017;122:20-30.

60. Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles - from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021;15:16982-7015.

61. Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-based nanoparticles for drug/gene delivery: an overview of the production techniques and difficulties encountered in their industrial development. ACS Mater Au 2023;3:600-19.

62. Zhai J, Fong C, Tran N, Drummond CJ. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 2019;13:6178-206.

63. Fornasier M, Murgia S. Non-lamellar lipid liquid crystalline nanoparticles: a smart platform for nanomedicine applications. Front Soft Matter 2023;3:1109508.

64. Lancelot A, Sierra T, Serrano JL. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin Drug Deliv 2014;11:547-64.

65. Mahmoud K, Swidan S, El-Nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 2022;20:109.

66. Kumar R, Dkhar DS, Kumari R, et al. Lipid based nanocarriers: production techniques, concepts, and commercialization aspect. J Drug Deliv Sci Tec 2022;74:103526.

67. Chaudhuri A, Kumar DN, Shaik RA, et al. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. Int J Mol Sci 2022;23:10068.

68. Jia Y, Wang X, Li L, Li F, Zhang J, Liang XJ. Lipid nanoparticles optimized for targeting and release of nucleic acid. Adv Mater 2024;36:e2305300.

69. Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2022;2:2100109.

70. Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: a review. Colloid Interfac Sci 2022;46:100561.

71. Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022;13:967505.

72. Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv Transl Res 2019;9:721-34.

73. Anarjan F. Active targeting drug delivery nanocarriers: ligands. Nano Struc Nano Objects 2019;19:100370.

74. Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev 2018;134:122-37.

75. Guo Y, Wang Z, Shi X, Shen M. Engineered cancer cell membranes: an emerging agent for efficient cancer theranostics. Exploration 2022;2:20210171.

76. Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;6:766-83.

77. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials 2019;9:638.

78. Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater 2023;8:282-300.

79. Xue X, Qu H, Li Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration 2022;2:20210134.

80. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238-52.

81. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013;8:102.

82. Chen Y, Cheng Y, Zhao P, et al. Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance. Int J Pharm 2018;542:266-79.

83. Yue G, Wang C, Liu B, et al. Liposomes co-delivery system of doxorubicin and astragaloside IV co-modified by folate ligand and octa-arginine polypeptide for anti-breast cancer. RSC Adv 2020;10:11573-81.

84. Gladkikh DV, Sen Kova AV, Chernikov IV, et al. Folate-equipped cationic liposomes deliver anti-MDR1-siRNA to the tumor and increase the efficiency of chemotherapy. Pharmaceutics 2021;13:1252.

85. Sriraman SK, Salzano G, Sarisozen C, Torchilin V. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm 2016;105:40-9.

86. Fu J, Li W, Xin X, Chen D, Hu H. Transferrin-modified nanoliposome codelivery strategies for enhancing the cancer therapy. J Pharm Sci 2020;109:2426-36.

87. Wang Y, Zhou J, Qiu L, et al. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials 2014;35:4297-309.

88. Cui S, Ni Y, Zhao Y, et al. Epidermal growth factor receptor-targeted immunomagnetic liposomes for circulating tumor cell enumeration in non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors. Lung Cancer 2019;132:45-53.

89. Burande AS, Viswanadh MK, Jha A, et al. EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer. AAPS PharmSciTech 2020;21:151.

90. Liu Y, Li X, Pen R, et al. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes. Biomed Eng Online 2022;21:53.

91. Pereira SGT, Hudoklin S, Kreft ME, Kostevsek N, Stuart MCA, Al-Jamal WT. Intracellular activation of a prostate specific antigen-cleavable doxorubicin prodrug: a key feature toward prodrug-nanomedicine design. Mol Pharm 2019;16:1573-85.

92. Mizutani K, Kawakami K, Fujita Y, et al. Gene therapy of prostate cancer using liposomes containing perforin expression vector driven by the promoter of prostate-specific antigen gene. Sci Rep 2022;12:1442.

93. Ghandhariyoun N, Jaafari MR, Nikoofal-Sahlabadi S, Taghdisi SM, Moosavian SA. Reducing Doxorubicin resistance in breast cancer by liposomal FOXM1 aptamer: in vitro and in vivo. Life Sci 2020;262:118520.

94. de Freitas CF, Montanha MC, Pellosi DS, Kimura E, Caetano W, Hioka N. “Biotin-targeted mixed liposomes: a smart strategy for selective release of a photosensitizer agent in cancer cells”. Mater Sci Eng C Mater Biol Appl 2019;104:109923.

95. Lu R, Zhou L, Yue Q, et al. Liposomes modified with double-branched biotin: a novel and effective way to promote breast cancer targeting. Bioorg Med Chem 2019;27:3115-27.

96. Li R, Peng Y, Pu Y, et al. Fructose and biotin co-modified liposomes for dual-targeting breast cancer. J Liposome Res 2022;32:119-28.

97. Singh P, Singh N, Mishra N, et al. Functionalized bosutinib liposomes for target specific delivery in management of estrogen-positive cancer. Colloids Surf B Biointerfaces 2022;218:112763.

98. Matusewicz L, Podkalicka J, Sikorski AF. Immunoliposomes with simvastatin as a potential therapeutic in treatment of breast cancer cells overexpressing HER2 - an in vitro study. Cancers 2018;10:418.

99. Kim B, Shin J, Wu J, et al. Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy. J Control Release 2020;322:530-41.

100. Chen IJ, Cheng YA, Ho KW, et al. Bispecific antibody (HER2 × mPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes. Acta Biomater 2020;111:386-97.

101. Li L, He D, Guo Q, et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnology 2022;20:50.

102. Zhang J, Du Z, Pan S, et al. Overcoming multidrug resistance by codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive lipoplexes: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 2018;10:21590-600.

103. Liu C, Zhao Z, Gao R, et al. Matrix metalloproteinase-2-responsive surface-changeable liposomes decorated by multifunctional peptides to overcome the drug resistance of triple-negative breast cancer through enhanced targeting and penetrability. ACS Biomater Sci Eng 2022;8:2979-94.

104. Wang P, Wang Y, Xia X, Huang W, Yan D. Redox-responsive drug-inhibitor conjugate encapsulated in DSPE-PEG2k micelles for overcoming multidrug resistance to chemotherapy. Biomater Sci 2023;11:4335-45.

105. Zhu Y, Zhang G, Li M, Ma L, Huang J, Qiu L. Ultrasound-augmented phase transition nanobubbles for targeted treatment of paclitaxel-resistant cancer. Bioconjug Chem 2020;31:2008-20.

106. Chen J, Fang C, Chang C, et al. Ultrasound-propelled liposome circumvention and siRNA silencing reverse BRAF mutation-arised cancer resistance to trametinib. Colloids Surf B Biointerfaces 2024;234:113710.

107. Li X, Wu X, Yang H, Li L, Ye Z, Rao Y. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother 2019;117:109072.

108. Haggag Y, Abu Ras B, El-Tanani Y, et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv 2020;17:1655-69.

109. Li Y, Tan X, Liu X, et al. Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance. Asian J Pharm Sci 2020;15:646-60.

110. Shen Q, Shen Y, Jin F, Du YZ, Ying XY. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res 2020;30:12-20.

111. Yin W, Zhao Y, Kang X, et al. BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFRT790M mutation. Theranostics 2020;10:6122-35.

112. Sun M, Xie H, Zhang W, et al. Bioinspired lipoproteins of furoxans-gemcitabine preferentially targets glioblastoma and overcomes radiotherapy resistance. Adv Sci 2024;11:e2306190.

113. Wang Y, Wang Z, Jia F, et al. CXCR4-guided liposomes regulating hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment. Bioact Mater 2022;17:147-61.

114. Zhu Y, Wang A, Zhang S, et al. Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells. J Adv Res 2023;49:159-73.

115. Zhu YX, Jia HR, Duan QY, et al. Photosensitizer-doped and plasma membrane-responsive liposomes for nuclear drug delivery and multidrug resistance reversal. ACS Appl Mater Interfaces 2020;12:36882-94.

116. Wu J, Wang F, Dong J, et al. Therapeutic response of multifunctional lipid and micelle formulation in hepatocellular carcinoma. ACS Appl Mater Interfaces 2022;14:45110-23.

117. Bai F, Yin Y, Chen T, et al. Development of liposomal pemetrexed for enhanced therapy against multidrug resistance mediated by ABCC5 in breast cancer. Int J Nanomedicine 2018;13:1327-39.

118. Baglo Y, Liang BJ, Robey RW, Ambudkar SV, Gottesman MM, Huang HC. Porphyrin-lipid assemblies and nanovesicles overcome ABC transporter-mediated photodynamic therapy resistance in cancer cells. Cancer Lett 2019;457:110-8.

119. Saw PE, Park J, Jon S, Farokhzad OC. A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine 2017;13:713-22.

120. Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci 2021;274:119337.

121. Wilson E, Goswami J, Baqui AH, et al; ConquerRSV Study Group. Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N Engl J Med 2023;389:2233-44.

122. Moderna Inc. Moderna Receives U.S. FDA approval for RSV vaccine mRESVIA(R). 2024. Available from: https://investors.modernatx.com/news/news-details/2024/Moderna-Receives-U.S.-FDA-Approval-for-RSV-Vaccine-mRESVIAR/default.aspx. [Last accessed on 19 Jun 2024].

123. Zhou F, Huang L, Li S, et al. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. Exploration 2024;4:20210146.

124. Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: design and recent applications. Exploration 2022;2:20210217.

125. El Moukhtari SH, Garbayo E, Amundarain A, et al. Lipid nanoparticles for siRNA delivery in cancer treatment. J Controll Release 2023;361:130-46.

126. Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022;21:58.

127. Makita Y, Teratani M, Murata S, Hoashi Y, Matsumoto S, Kawamata Y. Antitumor activity of kinetochore-associated protein 2 siRNA against lung cancer patient-derived tumor xenografts. Oncol Lett 2018;15:4676-82.

128. Fattore L, Cafaro G, Di Martile M, et al. Oncosuppressive miRNAs loaded in lipid nanoparticles potentiate targeted therapies in BRAF-mutant melanoma by inhibiting core escape pathways of resistance. Oncogene 2023;42:293-307.

129. Younis MA, Khalil IA, Elewa YH, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J Controll Release 2021;331:335-49.

130. Li C, Li T, Huang L, Yang M, Zhu G. Self-assembled lipid nanoparticles for ratiometric codelivery of cisplatin and siRNA targeting XPF to combat drug resistance in lung cancer. Chem Asian J 2019;14:1570-6.

131. Rosenblum D, Gutkin A, Kedmi R, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv 2020;6:eabc9450.

132. Chatterjee S, Naidu GS, Hazan-Halevy I, et al. Therapeutic gene silencing of CKAP5 leads to lethality in genetically unstable cancer cells. Sci Adv 2023;9:eade4800.

133. Ehexige E, Bao M, Bazarjav P, et al. Silencing of STAT3 via peptidomimetic LNP-mediated systemic delivery of RNAi downregulates PD-L1 and inhibits melanoma growth. Biomolecules 2020;10:285.

134. Nakamura T, Sato T, Endo R, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer 2021;9:e002852.

135. Cho R, Sakurai Y, Jones HS, Akita H, Hisaka A, Hatakeyama H. Silencing of VEGFR2 by RGD-modified lipid nanoparticles enhanced the efficacy of anti-PD-1 antibody by accelerating vascular normalization and infiltration of T cells in tumors. Cancers 2020;12:3630.

136. Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: types, properties and applications in drug delivery. IET Nanobiotechnology 2021;15:19-27.

137. Gao W, Ye G, Duan X, Yang X, Yang VC. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer. Int J Nanomedicine 2017;12:1047-64.

138. Chen R, Ni S, Chen W, Liu M, Feng J, Hu K. Improved anti-triple negative breast cancer effects of docetaxel by RGD-modified lipid-core micelles. Int J Nanomedicine 2021;16:5265-79.

139. Colombo S, Beck-broichsitter M, Bøtker JP, Malmsten M, Rantanen J, Bohr A. Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Adv Drug Deliv Rev 2018;128:115-31.

140. Fornaguera C, García-Celma MJ. Personalized nanomedicine: a revolution at the nanoscale. J Pers Med 2017;7:12.

141. Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. Nano Ex 2021;2:012006.

142. Alavi M, Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: recent advances and challenges. Drug Discov Today 2022;27:576-84.

143. Chavda VP, Vihol D, Mehta B, et al. Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine 2022;17:547-68.

144. Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024;9:92.

145. Bukhari SI, Imam SS, Ahmad MZ, et al. Recent progress in lipid nanoparticles for cancer theranostics: opportunity and challenges. Pharmaceutics 2021;13:840.

146. Zhang P, Li W, Liu C, et al. Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: from “Seeing” to “Measuring”. Exploration 2023;3:20230070.

147. Xin J, Han S, Zheng M, et al. A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chin Chem Lett 2024;35:109165.

148. Craig MA, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in medicine to address the challenge of cancer drug resistance: from micro- and nanotechnologies to computational and mathematical modeling. Chem Rev 2021;121:3352-89.

149. Stillman NR, Balaz I, Tsompanas M, et al. Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment. npj Comput Mater 2021;7:150.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/