REFERENCES

1. Mark C, Lee JS, Cui X, Yuan Y. Antibody-drug conjugates in breast cancer: current status and future directions. Int J Mol Sci. 2023;24:13726.

2. Ocaña A, Amir E, Pandiella A. HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates. Breast Cancer Res. 2020;22:15.

3. Loganzo F, Sung M, Gerber HP. Mechanisms of resistance to antibody-drug conjugates. Mol Cancer Ther. 2016;15:2825-34.

4. Monteiro MR, Nunes NCC, Junior AADS, et al. Antibody-drug conjugates in breast cancer: a comprehensive review of how to selectively deliver payloads. Breast Cancer. 2024;16:51-70.

5. Yamazaki CM, Yamaguchi A, Anami Y, et al. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun. 2021;12:3528.

6. Najjar MK, Manore SG, Regua AT, Lo HW. Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Genes. 2022;13:2065.

7. Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18:1117-30.

8. Fenton MA, Tarantino P, Graff SL. Sequencing antibody drug conjugates in breast cancer: exploring future roles. Curr Oncol. 2023;30:10211-23.

9. Li L, Wu Y, Lan B, Ma F. Efficacy and safety of first-line regimens for advanced HER2-positive breast cancer: a Bayesian network meta-analysis. Cancer Innov. 2024;3:e126.

10. Gogia A, Nigade J, Desai C, Govind BK, Deshmukh C, Swarup B. Trastuzumab emtansine: antibody-drug conjugate in treatment of human epidermal growth factor receptor-2-positive metastatic breast cancer. Indian J Med Paediatr Oncol. 2018;39:79-87.

11. Dzimitrowicz H, Berger M, Vargo C, et al. T-DM1 activity in metastatic human epidermal growth factor receptor 2-positive breast cancers that received prior therapy with trastuzumab and pertuzumab. J Clin Oncol. 2016;34:3511-7.

12. You C, Zhang Y, Chen Y, et al. Evaluation of background parenchymal enhancement and histogram-based diffusion-weighted image in determining the molecular subtype of breast cancer. J Comput Assist Tomogr. 2021;45:711-6.

13. Linehan AS, Fitzpatrick OM, Morris PG. Profile of trastuzumab deruxtecan in the management of patients with HER2-positive unresectable or metastatic breast cancer: an evidence-based review. Breast Cancer. 2021;13:151-9.

14. Wang J, Wang Y, Long F, Yan F, Wang N, Wang Y. The expression and clinical significance of GADD45A in breast cancer patients. PeerJ. 2018;6:e5344.

15. Zimmerman BS, Esteva FJ. Next-generation HER2-targeted antibody-drug conjugates in breast cancer. Cancers. 2024;16:800.

16. Sharma U, Sah RG, Agarwal K, et al. Potential of diffusion-weighted imaging in the characterization of malignant, benign, and healthy breast tissues and molecular subtypes of breast cancer. Front Oncol. 2016;6:126.

17. Vranic S. Sacituzumab govitecan expands its therapeutic spectrum among breast cancer subtypes. Biomol Biomed. 2023;23:189-90.

18. Damaskos C, Psilopatis I, Garmpi A, et al. Evaluation of the histone deacetylase 2 (HDAC-2) expression in human breast cancer. Cancers. 2024;16:209.

19. Weddell J, Chiney MS, Bhatnagar S, Gibbs JP, Shebley M. Mechanistic modeling of intra-tumor spatial distribution of antibody-drug conjugates: insights into dosing strategies in oncology. Clin Transl Sci. 2021;14:395-404.

20. Koukoutzeli C, Trapani D, Ascione L, et al. Use of antibody-drug conjugates in the early setting of breast cancer. Clin Med Insights Oncol. 2024;18:11795549241260418.

21. Abelman RO, Wu B, Spring LM, Ellisen LW, Bardia A. Mechanisms of resistance to antibody-drug conjugates. Cancers. 2023;15:1278.

22. Kwon MR, Youn I, Ko ES, Choi SH. Correlation of shear-wave elastography stiffness and apparent diffusion coefficient values with tumor characteristics in breast cancer. Sci Rep. 2024;14:7180.

23. Chang HL, Schwettmann B, McArthur HL, Chan IS. Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response. J Clin Invest. 2023;133:e172156.

24. Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications. Acta Pharm Sin B. 2020;10:1589-600.

25. Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E, et al. Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017;77:4639-51.

26. Yetkin Dİ, Akpınar MG, Durhan G, Demirkazik FB. Comparison of clinical and magnetic resonance imaging findings of triple-negative breast cancer with non-triple-negative tumours. Pol J Radiol. 2021;86:e269-76.

27. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18:3-19.

28. Kinneer K, Meekin J, Tiberghien AC, et al. SLC46A3 as a potential predictive biomarker for antibody-drug conjugates bearing noncleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin Cancer Res. 2018;24:6570-82.

29. Li G, Guo J, Shen BQ, et al. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol Cancer Ther. 2018;17:1441-53.

30. Wali VB, Patwardhan GA, Pelekanou V, et al. Identification and validation of a novel biologics target in triple negative breast cancer. Sci Rep. 2019;9:14934.

31. Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets. J Hematol Oncol. 2021;14:20.

32. Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules. 2021;26:5847.

33. Watanabe T, Arashida N, Fujii T, et al. Exo-cleavable linkers: a paradigm shift for enhanced stability and therapeutic efficacy in antibody-drug conjugates. J Med Chem. 2024;67:18124-38.

34. Gikanga B, Adeniji NS, Patapoff TW, Chih HW, Yi L. Cathepsin B cleavage of vcMMAE-based antibody-drug conjugate is not drug location or monoclonal antibody carrier specific. Bioconjug Chem. 2016;27:1040-9.

35. Phillips AC, Boghaert ER, Vaidya KS, et al. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther. 2016;15:661-9.

36. Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43:567-82.

37. Ung M, Lacaze J, Maio E, Dalenc F. Breast cancer treatment and antibody drug conjugates: beyond T-DM1. Med Res Arch. 2021;9.

38. Diamantis N, Banerji U. Antibody-drug conjugates--an emerging class of cancer treatment. Br J Cancer. 2016;114:362-7.

39. Okojie J, McCollum S, Barrott J. The future of antibody drug conjugation by comparing various methods of site-specific conjugation. Discov Med. 2023;35:921-7.

40. Peters S, Stahel R, Bubendorf L, et al. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing metastatic non-small cell lung cancer: efficacy, safety, and biomarkers. Clin Cancer Res. 2019;25:64-72.

41. Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, et al. Antibody-drug conjugates (ADCs) for cancer therapy: strategies, challenges, and successes. J Cell Physiol. 2019;234:5628-42.

42. Jerjian TV, Glode AE, Thompson LA, O’Bryant CL. Antibody-drug conjugates: a clinical pharmacy perspective on an emerging cancer therapy. Pharmacotherapy. 2016;36:99-116.

43. Ogitani Y, Aida T, Hagihara K, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22:5097-108.

44. Bardia A, Hurvitz SA, Tolaney SM, et al; ASCENT Clinical Trial Investigators. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384:1529-41.

45. Keskinkilic M, Sacks R. Antibody-drug conjugates in triple negative breast cancer. Clin Breast Cancer. 2024;24:163-74.

46. Khalid F, Kashyap R, Singh V, et al. Efficacy of sacituzumab govitecan based regimen in triple-negative breast cancer: a systematic review. J Clin Oncol. 2022;40:e13068.

47. Rossi V, Turati A, Rosato A, Carpanese D. Sacituzumab govitecan in triple-negative breast cancer: from bench to bedside, and back. Front Immunol. 2024;15:1447280.

48. Modi S, Jacot W, Yamashita T, et al; DESTINY-Breast04 Trial Investigators. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med. 2022;387:9-20.

49. Yao P, Zhang Y, Zhang S, et al. Knowledge atlas of antibody-drug conjugates on CiteSpace and clinical trial visualization analysis. Front Oncol. 2022;12:1039882.

50. Panikar SS, Berry NK, Shmuel S, Keltee N, Pereira PMR. In vivo biorthogonal antibody click for dual targeting and augmented efficacy in cancer treatment. bioRxiv 2023.

51. Conte P, Schneeweiss A, Loibl S, et al. Patient-reported outcomes from KATHERINE: a phase 3 study of adjuvant trastuzumab emtansine versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for human epidermal growth factor receptor 2-positive breast cancer. Cancer. 2020;126:3132-9.

52. Li CL, Ma XY, Yi P. Bispecific antibodies, immune checkpoint inhibitors, and antibody-drug conjugates directing antitumor immune responses: challenges and prospects. Cell Biochem Funct. 2024;42:e70011.

53. Yin Y, Wu X, Ouyang Q, et al. Abstract OT1-03-02: efficacy and safety of SKB264 for previously treated metastatic triple negative breast cancer in Phase 2 study. Cancer Res. 2023;83:OT1-03.

54. Hamilton EP, Dosunmu O, Shastry M, et al. A phase 2 study of HER3-DXd in patients (pts) with metastatic breast cancer (MBC). J Clin Oncol. 2023;41:1004.

55. Bardia A, Hurvitz S, Press MF, et al. Abstract GS2-03: GS2-03 TRIO-US B-12 TALENT: neoadjuvant trastuzumab deruxtecan with or without anastrozole for HER2-low, HR+ early stage breast cancer. Cancer Res. 2023;83:GS2-03.

56. Song H, Guo Z, Xie K, et al. Crotonylation of MCM6 enhances chemotherapeutics sensitivity of breast cancer via inducing DNA replication stress. Cell Prolif. 2025;58:e13759.

57. Shao X, Xie N, Chen Z, et al. Inetetamab for injection in combination with vinorelbine weekly or every three weeks in HER2-positive metastatic breast cancer: a multicenter, randomized, phase II clinical trial. J Transl Int Med. 2024;12:466-77.

58. Saleh K, Khoury R, Khalife N, et al. Mechanisms of action and resistance to anti-HER2 antibody-drug conjugates in breast cancer. Cancer Drug Resist. 2024;7:22.

59. Zou Y, Yang A, Chen B, et al. crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 2024;77:101126.

60. García-Alonso S, Ocaña A, Pandiella A. Resistance to antibody-drug conjugates. Cancer Res. 2018;78:2159-65.

61. Andreev J, Thambi N, Perez Bay AE, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther. 2017;16:681-93.

62. Guo Y, Shen Z, Zhao W, et al. Rational identification of novel antibody-drug conjugate with high bystander killing effect against heterogeneous tumors. Adv Sci. 2024;11:e2306309.

63. Schumacher D, Hackenberger CP, Leonhardt H, Helma J. Current status: site-specific antibody drug conjugates. J Clin Immunol. 2016;36 Suppl 1:100-7.

64. Zeng Y, Shi W, Dong Q, et al. A traceless site-specific conjugation on native antibodies enables efficient one-step payload assembly. Angew Chem Int Ed Engl. 2022;61:e202204132.

65. Gong X, Azhdarinia A, Ghosh SC, et al. LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol Cancer Ther. 2016;15:1580-90.

66. Cazzamalli S, Corso AD, Neri D. Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma. J Control Release. 2017;246:39-45.

67. Yang B, Meng F, Zhang J, et al. Engineered drug delivery nanosystems for tumor microenvironment normalization therapy. Nano Today. 2023;49:101766.

68. Coënon L, Villalba M. From CD16a biology to antibody-dependent cell-mediated cytotoxicity improvement. Front Immunol. 2022;13:913215.

69. Yeap WH, Wong KL, Shimasaki N, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310.

70. Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368.

71. Chen YF, Xu YY, Shao ZM, Yu KD. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun. 2023;43:297-337.

72. Zhang J, Liu R, Gao S, et al. Phase I study of A166, an antibody‒drug conjugate in advanced HER2-expressing solid tumours. NPJ Breast Cancer. 2023;9:28.

73. Zhang L, Romero P. Metabolic control of CD8+ T cell fate decisions and antitumor immunity. Trends Mol Med. 2018;24:30-48.

74. Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular matrices and cancer-associated fibroblasts: targets for cancer diagnosis and therapy? Cancers. 2021;13:3466.

75. Liu H, Chen J, Liu H, et al. The tumor immune profile of bladder cancer (BC) with HER2 over-expression and the investigation into RC48-ADC versus BCG in high-risk non-muscle invasive BC with HER2 over-expression. J Clin Oncol. 2024;42:e16614.

76. Wang J, Wang Y, Long F, Yan F, Wang N, Wang Y. The expression and clinical significance of GADD45A in breast cancer patients. PeerJ. 2018:e5344.

77. Chang H, Anawate I, Low A, et al. Abstract PO4-14-10: circulating tumor DNA as a biomarker for ADCs in metastatic breast cancer. Cancer Res. 2024;84:PO4-14.

78. Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol. 2024;17:44.

79. Xie Q, Ding J, Chen Y. Role of CD8+ T lymphocyte cells: interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B. 2021;11:1365-78.

80. Tan X, Fang P, Li K, et al. A HER2-targeted antibody-novel DNA topoisomerase I inhibitor conjugate induces durable adaptive antitumor immunity by activating dendritic cells. MAbs. 2023;15:2220466.

81. Müller P, Martin K, Theurich S, et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res. ;2:741-55.

82. Jiang W, He Y, He W, et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2020;11:622509.

83. Tsao L, Wang JS, Ragusa J, et al. Abstract A059: uncovering bystander killing mechanisms of trastuzumab deruxtecan (T-DXd): effective extracellular payload release via cathepsin L in HER2-low breast cancer. Cancer Immunol Res. 2024;12:A059.

84. Rinnerthaler G, Gampenrieder SP, Greil R. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int J Mol Sci. 2019;20:1115.

85. Thomas SP, Habel LA, Suga JM, et al. Evaluation of a predictive biomarker for antibody drug conjugates (ADCs). J Clin Oncol. 2024;42:3140.

86. Skidmore L, Sakamuri S, Knudsen NA, et al. ARX788, a site-specific anti-HER2 antibody-drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1-resistant breast and gastric cancers. Mol Cancer Ther. 2020;19:1833-43.

87. Agarwal S, Fang L, McGowen K, et al. Tumor-derived biomarkers predict efficacy of B7H3 antibody-drug conjugate treatment in metastatic prostate cancer models. J Clin Invest. 2023;133:e162148.

88. Beck A, Terral G, Debaene F, et al. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics. 2016;13:157-83.

89. Andre F, Hamilton EP, Loi S, et al. Dose-finding and -expansion studies of trastuzumab deruxtecan in combination with other anti-cancer agents in patients (pts) with advanced/metastatic HER2+ (DESTINY-Breast07 [DB-07]) and HER2-low (DESTINY-Breast08 [DB-08]) breast cancer (BC). J Clin Oncol. 2022;40:3025.

90. Xu B, Yin Y, Fan Y, et al. Sacituzumab tirumotecan (SKB264/MK-2870) in patients (pts) with previously treated locally recurrent or metastatic triple-negative breast cancer (TNBC): results from the phase III OptiTROP-Breast01 study. J Clin Oncol. 2024;42:104.

91. Hamilton EP, Dosunmu O, Shastry M, et al. A phase 2 study of HER3-DXd in patients (Pts) with metastatic breast cancer (MBC). 2023. Available from: https://www.asco.org/abstracts-presentations/ABSTRACT412400. [Last accessed on 3 Mar 2025].

92. Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol. 2021;12:731798.

93. Xia L, Wen L, Qin Y, et al. HER2-targeted antibody-drug conjugate induces host immunity against cancer stem cells. Cell Chem Biol. 2021;28:610-24.e5.

94. Zhang L, Yan Y, Gao Y, et al. Antibody-drug conjugates and immune checkpoint inhibitors in cancer treatment: a systematic review and meta-analysis. Sci Rep. 2024;14:22357.

95. He L, Wang L, Wang Z, et al. Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64:15716-26.

96. Gedik ME, Saatci O, Oberholtzer N, et al. Targeting TACC3 induces immunogenic cell death and enhances T-DM1 response in HER2-positive breast cancer. Cancer Res. 2024;84:1475-90.

97. Nucera S, Conti C, Martorana F, Wilson B, Genta S. Antibody-drug conjugates to promote immune surveillance: lessons learned from breast cancer. Biomedicines. 2024;12:1491.

98. Pinto A, Guarini C, Giampaglia M, et al. Synergizing immunotherapy and antibody-drug conjugates: new horizons in breast cancer therapy. Pharmaceutics. 2024;16:1146.

99. Li H, van der Leun AM, Yofe I, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019;176:775-89.e18.

100. Yu B, Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol. 2019;12:94.

101. Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: recent advances in payloads. Acta Pharm Sin B. 2023;13:4025-59.

102. Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Sig Transduct Target Ther. 2024;9:68.

103. Roussot N, Ghiringhelli F, Rébé C. Tumor immunogenic cell death as a mediator of intratumor CD8 T-cell recruitment. Cells. 2022;11:3672.

104. Schiavoni G, Mattei F, Gabriele L. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front Immunol. 2013;4:483.

105. Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol. 2018;9:3059.

106. Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14:2994-3006.

107. Òdena A, Monserrat L, Brasó-Maristany F, et al. Abstract P5-13-14: antitumor activity of patritumab deruxtecan (HER3-DXd), a HER3-directed antibody drug conjugate (ADC) across a diverse panel of breast cancer (BC) patient-derived xenografts (PDXs). Cancer Res. 2022;82:P5-13.

108. Dakroub R, Huard S, Hajj-Younes Y, et al. Therapeutic advantage of targeting PRMT5 in combination with chemotherapies or EGFR/HER2 inhibitors in triple-negative breast cancers. Breast Cancer. 2023;15:785-99.

109. Shin SH, Park YH, Park SS, et al. An elaborate new linker system significantly enhances the efficacy of an HER2-antibody-drug conjugate against refractory HER2-positive cancers. Adv Sci. 2021;8:e2102414.

110. Lopez S, Perrone E, Bellone S, et al. Preclinical activity of sacituzumab govitecan (IMMU-132) in uterine and ovarian carcinosarcomas. Oncotarget. 2020;11:560-70.

111. Nicolò E, Repetto M, Boscolo Bielo L, Tarantino P, Curigliano G. Antibody-drug conjugates in breast cancer: what is beyond HER2? Cancer J. 2022;28:436-45.

112. Le Joncour V, Martins A, Puhka M, et al. A novel anti-HER2 antibody-drug conjugate XMT-1522 for HER2-positive breast and gastric cancers resistant to trastuzumab emtansine. Mol Cancer Ther. 2019;18:1721-30.

113. Saltalamacchia G, Torrisi R, De Sanctis R, et al. Charting the course in sequencing antibody-drug conjugates in breast cancer. Biomedicines. 2024;12:500.

114. Guidi L, Boldrini L, Trapani D, Curigliano G. Antibody-drug conjugates in metastatic breast cancer: sequencing, combinations and resistances. Curr Opin Oncol. 2024;36:487-94.

115. Abdou Y, Bhardwaj P, Abelman R, et al. Abstract PO3-05-14: practice patterns for sequential use of antibody-drug conjugate after antibody-drug conjugate in metastatic breast cancer: results from a physician survey. Cancer Res. 2024;84:PO3-05.

116. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315-37.

117. Hammood M, Craig AW, Leyton JV. Impact of endocytosis mechanisms for the receptors targeted by the currently approved antibody-drug conjugates (ADCs)-a necessity for future ADC research and development. Pharmaceuticals. 2021;14:674.

118. Barnscher SD, Urosev D, Yin K, et al. Abstract 2052: screening novel format antibodies to design bispecific ADCs that address target heterogeneity. Cancer Res. 2024;84:2052.

119. Kendall RL, Lobba M, Johri S, et al. Abstract 5797: next generation antibody drug conjugates: multi-payload conjugates targeting multiple mechanisms of cell killing. Cancer Res. 2024;84:5797.

120. Gao J, Li Z, Lu Q, et al. Single-cell RNA sequencing reveals cell subpopulations in the tumor microenvironment contributing to hepatocellular carcinoma. Front Cell Dev Biol. 2023;11:1194199.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/