REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-49.
2. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020;21:3233.
3. Ward RA, Fawell S, Floc’h N, Flemington V, McKerrecher D, Smith PD. Challenges and opportunities in cancer drug resistance. Chem Rev 2021;121:3297-351.
5. Tiek D, Cheng SY. DNA damage and metabolic mechanisms of cancer drug resistance. Cancer Drug Resist 2022;5:368-79.
6. Wu G, Wilson G, George J, Liddle C, Hebbard L, Qiao L. Overcoming treatment resistance in cancer: current understanding and tactics. Cancer Lett 2017;387:69-76.
7. Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer 2019;1872:188310.
8. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18:452-64.
11. Liu J, Chen C, Wei T, et al. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration 2021;1:21-34.
12. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003.
13. Su Z, Dong S, Zhao SC, et al. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat 2021;58:100777.
14. Coombes R. Cancer drug resistance needs urgent attention, says research chief. BMJ 2019;365:l1934.
16. Zhou J, Yu G, Li Q, Wang M, Huang F. Separation of benzene and cyclohexane by nonporous adaptive crystals of a hybrid[3]arene. J Am Chem Soc 2020;142:2228-32.
17. Tang R, Ye Y, Zhu S, Wang Y, Lu B, Yao Y. Pillar[6]arenes: from preparation, host-guest property to self-assembly and applications. Chinese Chem Lett 2023;34:107734.
18. Yang L, Tan X, Wang Z, Zhang X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem Rev 2015;115:7196-239.
19. Yu G, Jie K, Huang F. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev 2015;115:7240-303.
20. Zhang W, Yang W, Zhou J. Biphenarenes, versatile synthetic macrocycles for supramolecular chemistry. Molecules 2023;28:4422.
21. Hu XY, Gao J, Chen FY, Guo DS. A host-guest drug delivery nanosystem for supramolecular chemotherapy. J Control Release 2020;324:124-33.
22. Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022;43:510-21.
23. Wang D, Yu C, Xu L, et al. Nucleoside analogue-based supramolecular nanodrugs driven by molecular recognition for synergistic cancer therapy. J Am Chem Soc 2018;140:8797-806.
24. Chang R, Zou Q, Zhao L, Liu Y, Xing R, Yan X. Amino-acid-encoded supramolecular photothermal nanomedicine for enhanced cancer therapy. Adv Mater 2022;34:2200139.
25. Yan M, Zhou J. Methylene-bridged naphthotubes: new macrocyclic arenes with great potential for supramolecular chemistry. Org Chem Front 2023;10:2340-5.
26. Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91.
27. Li Z, Song N, Yang YW. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 2019;1:345-68.
28. Wang L, Li L, Fan Y, Wang H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv Mater 2013;25:3888-98.
29. Zhou J, Yu G, Li Y, et al. [2]Pseudorotaxane-based supramolecular optical indicator for the visual detection of cellular cyanide excretion. Chemistry 2019;25:14447-53.
30. Yang X, Wu B, Zhou J, et al. Controlling intracellular enzymatic self-assembly of peptide by host-guest complexation for programming cancer cell death. Nano Lett 2022;22:7588-96.
31. Onishi Y, Eshita Y, Ji RC, et al. Supermolecular drug challenge to overcome drug resistance in cancer cells. Drug Discov Today 2018;23:1556-63.
32. Xu S, Zhu X, Huang W, Zhou Y, Yan D. Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy. J Control Release 2017;266:36-46.
33. Wang Q, Xiao M, Wang D, et al. In situ supramolecular self-assembly of Pt(IV) prodrug to conquer cisplatin resistance. Adv Funct Mater 2021;31:2101826.
34. Yang K, Qi S, Yu X, et al. A hybrid supramolecular polymeric nanomedicine for cascade-amplified synergetic cancer therapy. Angew Chem Int Ed Engl 2022;61:e202203786.
35. Yan M, Zhou J. Suprasomes: an emerging platform for cancer theranostics. Sci China Chem 2023;66:613-4.
36. Sun X, Zhao P, Lin J, Chen K, Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. Cancer Drug Resist 2023;6:390-415.
37. Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for overcoming cancer drug resistance. Pharmaceutics 2022;14:1606.
38. Ikuta D, Hirata Y, Wakamori S, et al. Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins. Science 2019;364:674-7.
39. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev 1998;98:1743-54.
41. Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-based nanosponges: overview and opportunities. Front Chem 2022;10:859406.
42. Gandhi S, Shende P. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy. J Control Release 2021;339:41-50.
43. Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA. Recent advances in host-guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 2020;30:1909049.
44. Wang M, Zhou J. Discovery of non-classical complex models between a cationic water-soluble pillar[6]arene and naphthalenesulfonate derivatives and their self-assembling behaviors. Soft Matter 2019;15:4127-31.
45. Fang G, Yang X, Chen S, Wang Q, Zhang A, Tang B. Cyclodextrin-based host-guest supramolecular hydrogels for local drug delivery. Coord Chem Rev 2022;454:214352.
46. Liu Z, Liu Y. Multicharged cyclodextrin supramolecular assemblies. Chem Soc Rev 2022;51:4786-827.
47. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 2004;3:1023-35.
48. Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022;10:2077-96.
49. Yang B, Dong X, Lei Q, Zhuo R, Feng J, Zhang X. Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl Mater Interfaces 2015;7:22084-94.
50. Wang H, Li S, Yang Y, Zhang L, Zhang Y, Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. Cancer Drug Resist 2022;5:954-70.
51. Yu G, Zhao X, Zhou J, et al. Supramolecular polymer-based nanomedicine: high therapeutic performance and negligible long-term immunotoxicity. J Am Chem Soc 2018;140:8005-19.
52. Yang C, Qin Y, Tu K, Xu C, Li Z, Zhang Z. Star-shaped polymer of β-cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition. Colloid Surface B 2018;169:10-9.
53. Das M, Nariya P, Joshi A, et al. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: a multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr Polym 2020;247:116751.
54. Mirzaei S, Gholami MH, Hashemi F, et al. Advances in understanding the role of P-gp in doxorubicin resistance: molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2022;27:436-55.
55. Zhang H, Xu H, Ashby CR Jr, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev 2021;41:525-55.
56. Halder J, Pradhan D, Kar B, Ghosh G, Rath G. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine 2022;40:102494.
57. Gottesman MM, Pastan IH. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J Natl Cancer Inst 2015;107:djv222.
58. Zhang L, Li Y, Hu C, et al. CDK6-PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells. Mol Cancer 2022;21:103.
59. Wang Q, Zou C, Wang L, et al. Doxorubicin and adjudin co-loaded pH-sensitive nanoparticles for the treatment of drug-resistant cancer. Acta Biomater 2019;94:469-81.
60. de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021;50:5397-434.
61. Tang G, He J, Liu J, Yan X, Fan K. Nanozyme for tumor therapy: surface modification matters. Exploration 2021;1:75-89.
62. Liu J, Zhao L, Shi L, et al. A sequentially responsive nanosystem breaches cascaded bio-barriers and suppresses P-glycoprotein function for reversing cancer drug resistance. ACS Appl Mater Interfaces 2020;12:54343-55.
63. Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843-51.
64. Sun NK, Kohli A, Huang SL, Chang TC, Chao CCK. Androgen receptor transcriptional activity and chromatin modifications on the ABCB1/MDR gene are critical for taxol resistance in ovarian cancer cells. J Cell Physiol 2019;234:8760-75.
65. Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020;5:101.
66. Balwani M, Sardh E, Ventura P, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med 2020;382:2289-301.
67. Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018;379:11-21.
68. Yuan Y, Liu J, Yu X, et al. Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA. Acta Biomater 2021;135:556-66.
69. Koltai T. The complex relationship between multiple drug resistance and the tumor pH gradient: a review. Cancer Drug Resist 2022;5:277-303.
70. Xing S, Hu K, Wang Y. Tumor immune microenvironment and immunotherapy in non-small cell lung cancer: update and new challenges. Aging Dis 2022;13:1615-32.
71. Shi B, Jie K, Zhou Y, Zhou J, Xia D, Huang F. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water. J Am Chem Soc 2016;138:80-3.
72. Sa P, Sahoo SK, Dilnawaz F. Responsive role of nanomedicine in the tumor microenvironment and cancer drug resistance. Curr Med Chem 2023;30:3335-55.
73. Wu Y, Li J, Zhong X, et al. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian J Pharm Sci 2022;17:206-18.
74. He H, Chen S, Zhou J, et al. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 2013;34:5344-58.
75. Shi Q, Zhang L, Liu M, et al. Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells. Biomaterials 2015;67:169-82.
76. Zhou Z, Guo F, Wang N, Meng M, Li G. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release. Int J Biol Macromol 2018;116:911-9.
77. Adeli F, Abbasi F, Babazadeh M, Davaran S. Thermo/pH dual-responsive micelles based on the host-guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnology 2022;20:91.
78. Yao X, Mu J, Zeng L, et al. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horiz 2019;6:846-70.
80. Song X, Zhang Z, Zhu J, et al. Thermoresponsive hydrogel induced by dual supramolecular assemblies and its controlled release property for enhanced anticancer drug delivery. Biomacromolecules 2020;21:1516-27.
81. Kost B, Brzeziński M, Cieślak M, et al. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers. Eur Polym J 2019;120:109271.
82. Zhou J, Yu G, Yang J, et al. Polymeric nanoparticles integrated from discrete organoplatinum(II) metallacycle by stepwise post-assembly polymerization for synergistic cancer therapy. Chem Mater 2020;32:4564-73.
83. Zhang Y, Yang D, Chen H, et al. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials 2018;163:14-24.
84. Pawar CS, Rajendra Prasad N, Yadav P, et al. Enhanced delivery of quercetin and doxorubicin using β-cyclodextrin polymer to overcome P-glycoprotein mediated multidrug resistance. Int J Pharm 2023;635:122763.
85. Zhang W, Yang W, Chen J, Wang Y, Yan M, Zhou J. An amphiphilic water-soluble biphen[3]arene with a tunable lower critical solution temperature behavior. New J Chem 2022;46:21453-7.
86. Chen X, Qiu YK, Owh C, Loh XJ, Wu YL. Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers. Nanoscale 2016;8:18876-81.
87. Cheng H, Fan X, Wang X, et al. Hierarchically self-assembled supramolecular host-guest delivery system for drug resistant cancer therapy. Biomacromolecules 2018;19:1926-38.
88. Fan X, Cheng H, Wang X, et al. Thermoresponsive supramolecular chemotherapy by “V”-shaped armed β-cyclodextrin star polymer to overcome drug resistance. Adv Healthc Mater 2018;7:1701143.
89. Li W, Xu C, Li S, et al. Cyclodextrin based unimolecular micelles with targeting and biocleavable abilities as chemotherapeutic carrier to overcome drug resistance. Mater Sci Eng C Mater Biol Appl 2019;105:110047.
90. Kumar R, Sharma A, Singh H, et al. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem Rev 2019;119:9657-721.
91. Feng HT, Li Y, Duan X, et al. Substitution activated precise phototheranostics through supramolecular assembly of AIEgen and calixarene. J Am Chem Soc 2020;142:15966-74.
92. Cao S, Zhang H, Zhao Y, Zhao Y. Pillararene/Calixarene-based systems for battery and supercapacitor applications. eScience 2021;1:28-43.
94. Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci 2019;269:187-202.
95. Zhou J, Yang J, Zhang Z, Yu G. A cationic water-soluble biphen[3]arene: synthesis, host-guest complexation and fabrication of a supra-amphiphile. RSC Adv 2016;6:77179-83.
96. Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2017;46:7021-53.
97. Chen C, Ni X, Tian HW, Liu Q, Guo DS, Ding D. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew Chem Int Ed Engl 2020;59:10008-12.
98. Zhang Z, Yue YX, Li Q, et al. Design of calixarene-based ICD inducer for efficient cancer immunotherapy. Adv Funct Mater 2023;33:2213967.
99. Xu L, Chai J, Wang Y, et al. Calixarene-integrated nano-drug delivery system for tumor-targeted delivery and tracking of anti-cancer drugs in vivo. Nano Res 2022;15:7295-303.
100. Liu Q, Zhang TX, Zheng Y, et al. Calixarene-embedded nanoparticles for interference-free gene-drug combination cancer therapy. Small 2021;17:2006223.
102. Rahimi M, Karimian R, Noruzi EB, et al. Needle-shaped amphoteric calix[4]arene as a magnetic nanocarrier for simultaneous delivery of anticancer drugs to the breast cancer cells. Int J Nanomedicine 2019;14:2619-36.
104. Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-depleting nanomedicines for synergistic cancer therapy. ACS Nano 2021;15:8039-68.
105. Xiao X, Wang K, Zong Q, Tu Y, Dong Y, Yuan Y. Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials 2021;270:120649.
106. Gorrini C, Mak TW. Glutathione metabolism: an achilles’ heel of ARID1A-deficient tumors. Cancer Cell 2019;35:161-3.
107. Xiong Y, Xiao C, Li Z, Yang X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev 2021;50:6013-41.
108. Ding Y, Dai Y, Wu M, Li L. Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chem Eng J 2021;426:128880.
109. Dai X, Zhou X, Liao C, Yao Y, Yu Y, Zhang S. A nanodrug to combat cisplatin-resistance by protecting cisplatin with p-sulfonatocalix[4]arene and regulating glutathione S-transferases with loaded 5-fluorouracil. Chem Commun 2019;55:7199-202.
110. Jin P, Jiang J, Zhou L, et al. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022;15:97.
111. Yu G, Wu D, Li Y, et al. A pillar[5]arene-based [2]rotaxane lights up mitochondria. Chem Sci 2016;7:3017-24.
112. Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 2017;114:E9066-75.
113. Luo X, Gong X, Su L, et al. Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy. Angew Chem Int Ed Engl 2021;60:1403-10.
114. Nair JB, Joseph MM, Arya JS, Sreedevi P, Sujai PT, Maiti KK. Elucidating a thermoresponsive multimodal photo-chemotherapeutic nanodelivery vehicle to overcome the barriers of doxorubicin therapy. ACS Appl Mater Interfaces 2020;12:43365-79.
116. Hu JH, Huang Y, Redshaw C, Tao Z, Xiao X. Cucurbit[n]uril-based supramolecular hydrogels: synthesis, properties and applications. Coord Chem Rev 2023;489:215194.
117. Ghosh SK, Dhamija A, Ko YH, et al. Superacid-mediated functionalization of hydroxylated cucurbit[n]urils. J Am Chem Soc 2019;141:17503-6.
118. Fahmy SA, Nematallah KA, Mahdy NK, El-Askary HI, Meselhy MR, El-Said Azzazy HM. Enhanced antioxidant, antiviral, and anticancer activities of the extract of fermented egyptian rice bran complexed with hydroxypropyl-β-cyclodextrin. ACS Omega 2022;7:19545-54.
119. Wu D, Li Y, Yang J, et al. Supramolecular nanomedicine constructed from cucurbit[8]uril-based amphiphilic brush copolymer for cancer therapy. ACS Appl Mater Interfaces 2017;9:44392-401.
120. Wang Z, Sun C, Yang K, Chen X, Wang R. Cucurbituril-based supramolecular polymers for biomedical applications. Angew Chem Int Ed Engl 2022;61:e202206763.
121. You Y, Zhou K, Guo B, et al. Measuring binding constants of cucurbituril-based host-guest interactions at the single-molecule level with nanopores. ACS Sens 2019;4:774-9.
122. Shukla S, Sagar B, Sood AK, Gaur A, Batra S, Gulati S. Supramolecular chemotherapy with cucurbit[n]urils as encapsulating hosts. ACS Appl Bio Mater 2023;6:2089-101.
123. Redondo-Gómez C, Padilla-Lopátegui S, Mata A, Azevedo HS. Peptide amphiphile hydrogels based on homoternary cucurbit[8]uril host-guest complexes. Bioconjug Chem 2022;33:111-20.
124. Barooah N, Mohanty J, Bhasikuttan AC. Cucurbituril-based supramolecular assemblies: prospective on drug delivery, sensing, separation, and catalytic applications. Langmuir 2022;38:6249-64.
125. Liu Z, Lin W, Liu Y. Macrocyclic supramolecular assemblies based on hyaluronic acid and their biological applications. Acc Chem Res 2022;55:3417-29.
126. Li Q, Sun J, Zhou J, Hua B, Shao L, Huang F. Barium cation-responsive supra-amphiphile constructed by a new twisted cucurbit[15]uril/paraquat recognition motif in water. Org Chem Front 2018;5:1940-4.
127. Alabrahim OAA, Fahmy SA, Azzazy HME. Stimuli-responsive cucurbit[n]uril-based supramolecular nanocarriers for delivery of chemotherapeutics. ACS Appl Nano Mater 2023;6:3139-58.
128. Yu Q, Deng T, Lin FC, Zhang B, Zink JI. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano 2020;14:5926-37.
129. Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist 2022;5:850-72.
130. Neophytou CM, Trougakos IP, Erin N, Papageorgis P. Apoptosis deregulation and the development of cancer multi-drug resistance. Cancers 2021;13:4363.
131. Sun M, He L, Fan Z, Tang R, Du J. Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials 2020;257:120252.
132. Janzen DM, Tiourin E, Salehi JA, et al. Retraction note: an apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer. Nat Commun 2020;11:2218.
133. Rainho MA, Siqueira PB, de Amorim ÍSS, Mencalha AL, Thole AA. Mitochondria in colorectal cancer stem cells - a target in drug resistance. Cancer Drug Resist 2023;6:273-83.
134. Chen W, Shi K, Chu B, Wei X, Qian Z. Mitochondrial surface engineering for multidrug resistance reversal. Nano Lett 2019;19:2905-13.
135. Zhou J, Hua B, Shao L, Feng H, Yu G. Host-guest interaction enhanced aggregation-induced emission and its application in cell imaging. Chem Commun 2016;52:5749-52.
136. Dai XY, Zhang B, Yu Q, Liu Y. In situ coassembly induced mitochondrial aggregation activated drug-resistant tumor treatment. J Med Chem 2022;65:7363-70.
137. Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and function of hepatobiliary ATP binding cassette transporters. Chem Rev 2021;121:5240-88.
138. Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist 2021;4:784-804.
139. Wang H, Wu H, Yi Y, et al. Self-motivated supramolecular combination chemotherapy for overcoming drug resistance based on acid-activated competition of host-guest interactions. CCS Chem 2021;3:1413-25.
140. Zhao T, Wang X, Fu L, Yang K. Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response. Cancer Drug Resist 2022;5:436-50.
141. Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019;17:156-66.
142. Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol 2023;31:159-72.
143. Gmeiner WH, Okechukwu CC. Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects. Cancer Drug Resist 2023;6:257-72.
144. Yan X, Ma F, Chen Q, et al. Construction of size-transformable supramolecular nano-platform against drug-resistant colorectal cancer caused by Fusobacterium nucleatum. Chem Eng J 2022;450:137605.
145. Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc 2008;130:5022-3.
146. Sun J, Hua B, Li Q, Zhou J, Yang J. Acid/base-controllable FRET and self-assembling systems fabricated by rhodamine B functionalized pillar[5]arene-based host-guest recognition motifs. Org Lett 2018;20:365-8.
147. Yan M, Zhou J. Pillararene-based supramolecular polymers for cancer therapy. Molecules 2023;28:1470.
148. Song N, Kakuta T, Yamagishi T, Yang YW, Ogoshi T. Molecular-scale porous materials based on pillar[n]arenes. Chem 2018;4:2029-53.
149. Wang J, Wang D, Cen M, et al. GOx-assisted synthesis of pillar[5]arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy. J Nanobiotechnology 2022;20:33.
150. Wang C, Li H, Dong J, et al. Pillararene-based supramolecular vesicles for stimuli-responsive drug delivery. Chemistry 2022;28:e202202050.
151. Zhu W, Li E, Zhou J, Zhou Y, Sheng X, Huang F. Highly selective removal of heterocyclic impurities from toluene by nonporous adaptive crystals of perethylated pillar[6]arene. Mater Chem Front 2020;4:2325-9.
152. Wang M, Fang S, Yang S, et al. Separation of ethyltoluene isomers by nonporous adaptive crystals of perethylated and perbromoethylated pillararenes. Mater Today Chem 2022;24:100919.
153. Yang W, Zhang W, Chen J, Zhou J. Mono-functionalized pillar[n]arenes: syntheses, host-guest properties and applications. Chinese Chem Lett 2024;35:108740.
154. Wang Y, Wang D, Wang J, et al. Pillar[5]arene-derived covalent organic materials with pre-encoded molecular recognition for targeted and synergistic cancer photo- and chemotherapy. Chem Commun 2022;58:1689-92.
155. Zhou J, Yu G, Shao L, Hua B, Huang F. A water-soluble biphen[3]arene: synthesis, host-guest complexation, and application in controllable self-assembly and controlled release. Chem Commun 2015;51:4188-91.
156. Zhou L, Cao S, Liu C, Zhang H, Zhao Y. Pillar[n]arene-based polymeric systems for biomedical applications. Coord Chem Rev 2023;491:215260.
157. Li Q, Li X, Ning L, Tan CH, Mu Y, Wang R. Hyperfast water transport through biomimetic nanochannels from peptide-attached (pR)-pillar[5]arene. Small 2019;15:1804678.
158. Liu H, Yang J, Yan X, et al. A dendritic polyamidoamine supramolecular system composed of pillar[5]arene and azobenzene for targeting drug-resistant colon cancer. J Mater Chem B 2021;9:9594-605.
159. Chang Y, Yang K, Wei P, et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed Engl 2014;53:13126-30.
160. Wang M, Zhou J, Li E, Zhou Y, Li Q, Huang F. Separation of monochlorotoluene isomers by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. J Am Chem Soc 2019;141:17102-6.
161. Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019;7:7656-75.
162. Liu X, Jia K, Wang Y, et al. Dual-responsive bola-type supra-amphiphile constructed from water-soluble pillar[5]arene and naphthalimide-containing amphiphile for intracellular drug delivery. ACS Appl Mater Interfaces 2017;9:4843-50.
163. Wang M, Li Q, Li E, Liu J, Zhou J, Huang F. Vapochromic behaviors of a solid-state supramolecular polymer based on exo-wall complexation of perethylated pillar[5]arene with 1,2,4,5-tetracyanobenzene. Angew Chem Int Ed Engl 2021;60:8115-20.
164. Yang K, Wen J, Chao S, et al. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy. Chem Commun 2018;54:5911-4.
165. Bai Y, Liu C, Yang J, Liu C, Shang Q, Tian W. Supramolecular self-assemblies based on water-soluble pillar[6]arene and drug-drug conjugates for the combination of chemotherapy. Colloid Surface B 2022;217:112606.
166. Yu G, Zhou J, Chi X. Pillar[10]arene-based size-selective host-guest complexation and its application in tuning the LCST behavior of a thermoresponsive polymer. Macromol Rapid Commun 2015;36:23-30.
167. Shao W, Liu X, Sun G, Hu XY, Zhu JJ, Wang L. Construction of drug-drug conjugate supramolecular nanocarriers based on water-soluble pillar[6]arene for combination chemotherapy. Chem Commun 2018;54:9462-5.
168. Liu Y, Liao Y, Li P, Li ZT, Ma D. Cross-linked pillar[6]arene nanosponges fabricated by the use of a supra-amphiphilic template: cargo encapsulation and overcoming multidrug resistance. ACS Appl Mater Interfaces 2020;12:7974-83.
169. Zhou J, Chen M, Diao G. Synthesis of the first amphiphilic pillar[6]arene and its enzyme-responsive self-assembly in water. Chem Commun 2014;50:11954-6.
170. Yu G, Zhou J, Shen J, Tang G, Huang F. Cationic pillar[6]arene/ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem Sci 2016;7:4073-8.
171. Yao X, Yang B, Xu J, He Q, Yang W. Novel gas-based nanomedicines for cancer therapy. VIEW 2022;3:20200185.
172. Deng Y, Jia F, Chen X, Jin Q, Ji J. ATP suppression by pH-activated mitochondria-targeted delivery of nitric oxide nanoplatform for drug resistance reversal and metastasis inhibition. Small 2020;16:2001747.
173. Zhou J, Yang J, Hua B, Shao L, Zhang Z, Yu G. The synthesis, structure, and molecular recognition properties of a [2]calix[1]biphenyl-type hybrid[3]arene. Chem Commun 2016;52:1622-4.
174. Ding Y, Ma Y, Zhu L, et al. Nitric oxide-containing supramolecular polypeptide nanomedicine based on [2]biphenyl-extended-pillar[6]arenes for drug resistance reversal. J Mater Chem B 2022;10:6181-6.
175. Valverde MA, Díaz M, Sepúlveda FV, Gill DR, Hyde SC, Higgins CF. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 1992;355:830-3.
176. Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, Sepúlveda FV. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 1992;71:23-32.
177. Yang K, Ma K, Yang M, Lv Y, Pei Y, Pei Z. Supramolecular nanoprodrug based on a chloride channel blocker and glycosylated pillar[5]arenes for targeted chemoresistance cancer therapy. Chem Commun 2023;59:3779-82.
178. van Waardenburg RCAM, Yang ES. Targeting DNA repair pathways to overcome cancer drug resistance. Cancer Drug Resist 2021;4:837-41.
179. Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist 2021;4:244-63.