REFERENCES
1. Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: an epigenetic overview. Int J Mol Sci 2013;14:21087-113.
3. Greenivald P, Dunn BK. Landmarks in the history of cancer epidemiology. Cancer Res 2009;69:2151-62.
4. Van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine. Nat Nanotechnol 2019;14:1007-17.
5. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017;2:1-18.
6. Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors: The main reason for therapeutic failure. Arzneimittelforschung 2008;58:261-4.
7. Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel) 2014;6:1769-92.
9. Yang J, Yu Y, Liu W, et al. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. Res Rep Urol 2017;9:71-7.
10. Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol 2016;43:723-37.
11. Kalal BS, Upadhya D, Pai VR. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev 2017;11:19-25.
12. Suzawa K, Offin M, Schoenfeld AJ, et al. Acquired MET Exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR -mutated lung cancer. JCO Precis Oncol 2019;3:1-8.
13. Robey RW, Pluchino KM, Hall MD, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018;18:452-64.
14. Hermawan A, Wagner E, Roidl A. Consecutive salinomycin treatment reduces doxorubicin resistance of breast tumor cells by diminishing drug efflux pump expression and activity. Oncol Rep 2016;35:1732-40.
15. Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 2016;22:6876-89.
16. Kim SJ, Kim S, Kim DW, et al. Alterations in PD-L1 expression associated with acquisition of resistance to ALK inhibitors in ALK-rearranged lung cancer. Cancer Res Treat 2019;51:1231-40.
17. Toth RK, Tran JD, Muldong MT, et al. Hypoxia-induced PIM kinase and laminin-activated integrin $α$6 mediate resistance to PI3K inhibitors in bone-metastatic CRPC. Am J Clin Exp Urol 2019;7:297-312.
18. Wang S, Liu F, Zhu J, et al. DNA repair genes ERCC1 and BRCA1 expression in non-small cell lung cancer chemotherapy drug resistance. Med Sci Monit 2016;22:1999-2005.
19. Nogales V, Reinhold WC, Varma S, et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget 2016;7:3084-97.
20. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 2018;15:81-94.
21. Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and Lesion-Specific response to targeted therapy in colorectal cancer. Cancer Discov 2016;6:147-53.
22. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 2017;7:339-48.
23. Du B, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 2016;21:965.
24. Elaskalani O, Razak NBA, Falasca M, Metharom P. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J Gastrointestinal Oncol 2017;9:37-41.
25. Islam SU, Shehzad A, Sonn JK, Lee YS. PRPF overexpression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. Oncotarget 2017;8:56659-71.
26. Gao M, Deng J, Liu F, et al. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019;223:119486.
27. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017;6:44.
28. Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017;14:228-41.
29. Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Del 2015;12:129-42.
30. Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives (Review). Oncol Rep 2017;38:611-24.
31. Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017;12:7291-309.
32. Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surfaces B Biointerfaces 2019;173:581-90.
33. Raveendran R. Chapter 12 - Polymeric micelles: Smart nanocarriers for anticancer drug delivery. In: Sharma CP, editor. Drug Delivery Nanosystems for Biomedical Applications. Elsevier; 2018. pp. 255-73.
34. Yang X, Lian K, Tan Y, et al. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr Polym 2020;229:115435.
35. Yao Q, Liu Y, Kou L, et al. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine 2019;19:71-80.
36. Zhen S, Yi X, Zhao Z, et al. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019;218:119330.
37. Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: a review. Eur Polym J 2020;126:109546.
38. Choudhary S, Gupta L, Rani S, Dave K, Gupta U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front Pharmacol 2017;8:261.
39. Rajani C, Borisa P, Karanwad T, et al. 7 - Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier. In: Chauhan A, Kulhari H, editors. Pharmaceutical Applications of Dendrimers. Elsevier; 2020. pp. 151-98.
40. Siriviriyanun A, Tsai YJ, Voon SH, et al. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater Sci Eng C 2018;89:307-15.
41. Golshan M, Salami-Kalajahi M, Mirshekarpour M, Roghani-Mamaqani H, Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surfaces B Biointerfaces 2017;155:257-65.
42. Fan Y, Yuan S, Huo M, et al. Spatial controlled multistage nanocarriers through hybridization of dendrimers and gelatin nanoparticles for deep penetration and therapy into tumor tissue. Nanomedicine 2017;13:1399-410.
43. Rompicharla SVK, Kumari P, Bhatt H, Ghosh B, Biswas S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int J Pharm 2019;557:329-41.
44. Liang S, Sun C, Yang P, et al. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials 2020;240:119850.
45. Pan J, Mendes LP, Yao M, et al. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 2019;136:18-28.
46. Gouveia M, Figueira J, Jardim MG, et al. Poly(alkylidenimine) dendrimers functionalized with the organometallicmoiety [Ru(ν 5-C5H5)(PPh3)2]+ as promising drugs against cisplatin-resistant cancer cells and humanmesenchymal stem cells. Molecules 2018;23:1471.
47. Messager L, Gaitzsch J, Chierico L, Battaglia G. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol 2014;18:104-11.
48. Dan N. Chapter 1 - vesicle-based drug carriers: liposomes, polymersomes, and niosomes. In: Grumezescu AM, editor. Design and Development of New Nanocarriers. William Andrew Publishing; 2018. pp. 1-55.
49. Khan MA, Ali S, Venkatraman SS, et al. Fabrication of poly (butadiene-block-ethylene oxide) based amphiphilic polymersomes: an approach for improved oral pharmacokinetics of Sorafenib. Int J Pharm 2018;542:196-204.
50. Köthe T, Martin S, Reich G, Fricker G. Dual asymmetric centrifugation as a novel method to prepare highly concentrated dispersions of PEG-b-PCL polymersomes as drug carriers. Int J Pharm 2020;579:119087.
51. Liu Q, Song L, Chen S, et al. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials 2017;114:23-33.
52. Zhu D, Wu S, Hu C, et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomater 2017;58:399-412.
53. Zavvar T, Babaei M, Abnous K, et al. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int J Pharm 2020;578:119091.
54. Simón-Gracia L, Hunt H, Scodeller PD, et al. Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther 2016;15:670.
55. Alibolandi M, Ramezani M, Abnous K, Hadizadeh F. AS1411 aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J Pharm Sci 2016;105:1741-50.
56. Alibolandi M, Abnous K, Hadizadeh F, et al. Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo. J Control Release 2016;241:45-56.
57. Qin Y, Zhang Z, Huang C, et al. Folate-targeted redox-responsive polymersomes loaded with chemotherapeutic drugs and tariquidar to overcome drug resistance. J Biomed Nanotechnol 2018;14:1705-18.
58. Franke CE, Czapar AE, Patel RB, Steinmetz NF. Tobacco mosaic virus-delivered cisplatin restores efficacy in platinum-resistant ovarian cancer cells. Mol Pharm 2018;15:2922-31.
59. Perillo E, Porto S, Falanga A, et al. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget 2016;7:4077-92.
61. Hou W, Sampath P, Rojas JJ, Thorne SH. Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell 2016;30:108-19.
62. Mahoney DJ, Lefebvre C, Allan K, et al. Virus-Tumor interactome screen reveals ER stress response can reprogram resistant cancers for oncolytic virus-triggered caspase-2 cell death. Cancer Cell 2011;20:443-56.
63. Muscolini M, Castiello L, Palermo E, et al. SIRT1 modulates the sensitivity of prostate cancer cells to vesicular stomatitis virus oncolysis. J Virol 2019;93:e00626-19.
64. Dold C, Rodriguez Urbiola C, Wollmann G, et al. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. Mol Ther Oncolytics 2016;3:16021.
65. Martikainen M, Niittykoski M, von und zu Fraunberg M, et al. MicroRNA-attenuated clone of virulent semliki forest virus overcomes antiviral type i interferon in resistant mouse CT-2A glioma. J Virol 2015;89:10637-47.
66. Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J Food Sci Technol 2020;57:3545-55.
67. Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: concept to clinical stance. J Drug Deliv Sci Technol 2020;56:101509.
68. Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 2019;15:1-18.
69. Jampílek J, Kráľová K. Chapter 8 - recent advances in lipid nanocarriers applicable in the fight against cancer. In: Grumezescu AM, editor. Nanoarchitectonics in Biomedicine. William Andrew Publishing; 2019. pp. 219-94.
71. Kiaie N, Gorabi AM, Penson PE, et al. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today 2020;25:58-72.
72. Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015;6:286.
73. Crommelin DJA, van Hoogevest P, Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J Control Release 2020;318:256-63.
74. Paliwal SR, Paliwal R, Agrawal GP, Vyas SP. Hyaluronic acid modified pH-sensitive liposomes for targeted intracellular delivery of doxorubicin. J Liposome Res 2016;26:276-87.
75. Chen M, Song F, Liu Y, et al. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. Nanoscale 2019;11:3814-26.
76. Feng X, Li L, Jiang H, et al. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy. Biochem Biophys Res Commun 2014;444:376-81.
77. Qiu L, Gao M, Xu Y. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int J Nanomedicine 2015;10:6615.
78. Kang XJ, Wang HY, Peng HG, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin 2017;38:885-96.
79. Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res 2020. doi: 10.1007/s13346-020-00720-9
80. Shen Q, Shen Y, Jin F, Du Y, Ying X. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J Liposome Res 2020;30:12-20.
81. Li X, Wu X, Yang H, et al. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother 2019;117:109072.
82. Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol 2020;55:101458.
83. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials 2019;9:474.
84. Abdelaziz HM, Freag MS, Elzoghby AO. Chapter 5 - solid lipid nanoparticle-based drug delivery for lung cancer. In: Kesharwani P, editor. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Academic Press; 2019. pp. 95-121.
85. Rajabi M, Mousa SA. Lipid nanoparticles and their application in nanomedicine. Curr Pharm Biotechnol 2016;17:662-72.
86. Mihai MM, Holban AM, Călugăreanu A, Orzan OA. Chapter 11 - Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. In: Ficai A, Grumezescu AM, editors. Nanostructures for Cancer Therapy. Elsevier; 2017. pp. 285-306.
87. Trapani A, Mandracchia D, Tripodo G, et al. Solid lipid nanoparticles made of self-emulsifying lipids for efficient encapsulation of hydrophilic substances. AIP Conference Proceedings 2145, 20004. AIP Publishing LLC; 2019.
88. Dumont C, Bourgeois S, Fessi H, Dugas PY, Jannin V. In-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int J Pharm 2019;565:409-18.
89. Oner E, Kotmakci M, Kantarci AG. A promising approach to develop nanostructured lipid carriers from solid lipid nanoparticles: preparation, characterization, cytotoxicity and nucleic acid binding ability. Pharm Dev Technol 2020;25:936-48.
90. Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: a dual-targeted approach. Int J Biol Macromol 2020;151:830-44.
92. Affram KO, Smith T, Ofori E, et al. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol 2020;55:101374.
93. Oliveira MS, Aryasomayajula B, Pattni B, et al. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm 2016;512:292-300.
94. Jiang T, Zhang C, Sun W, et al. Doxorubicin encapsulated in TPGS-modified 2D-nanodisks overcomes multidrug resistance. Chem A Eur J 2020;26:2470-7.
95. Tang J, Ji H, Ren J, et al. Solid lipid nanoparticles with TPGS and brij 78: a co-delivery vehicle of cur and piperine for reversing P-Glycoprotein-Mediated multidrug resistance in vitro. Oncol Lett 2017;13:389-95.
96. Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces 2016;146:114-26.
97. Wang F, Li L, Liu B, Chen Z, Li C. Hyaluronic acid decorated pluronic P85 solid lipid nanoparticles as a potential carrier to overcome multidrug resistance in cervical and breast cancer. Biomed Pharmacother 2017;86:595-604.
98. Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019;116:109006.
99. Pedrosa P, Corvo ML, Ferreira-Silva M, et al. Targeting cancer resistance via multifunctional gold nanoparticles. Int J Mol Sci 2019;20:5510.
100. Rathinaraj P, Muthusamy G, Prasad NR, et al. Folate-gold-bilirubin nanoconjugate induces apoptotic death in multidrug-resistant oral carcinoma cells. Eur J Drug Metab Pharmacokinet 2020;45:285-96.
101. Kumon K, Kubota T, Kuroda S, et al. Abstract 3617: Trastuzumab-conjugated gold nanoparticles as novel HER2-targeted therapeutics against trastuzumab-resistant gastric cancer. Cancer Res 2019;79:3617.
102. Deng R, Ji B, Yu H, et al. Multifunctional gold nanoparticles overcome microRNA regulatory network mediated-multidrug resistant leukemia. Sci. Rep 2019;9:1-11.
103. Huai Y, Zhang Y, Xiong X, Das S, Bhattacharya R, Mukherjee P. Gold nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress 2019;3:267-79.
104. Talamantez-Lyburn S, Brown P, Hondrogiannis N, et al. Gold nanoparticles loaded with cullin-5 DNA increase sensitivity to 17-AAG in cullin-5 deficient breast cancer cells. Int J Pharm 2019;564:281-92.
105. Gopisetty MK, Kovács D, Igaz N, et al. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J Nanobiotechnol 2019;17:9.
106. Ramezani T, Nabiuni M, Baharara J, Parivar K, Namvar F. Sensitization of resistance ovarian cancer cells to cisplatin by biogenic synthesized silver nanoparticles through p53 activation. Iran J Pharm Res 2019;18:222-31.
107. Kovács D, Szőke K, Igaz N, et al. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine Nanotechnol Biol Med 2016;12:601-10.
108. Wang Y, Zhao R, Wang S, Liu Z, Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials 2016;75:71-81.
109. Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci 2018;9:790-810.
110. Cho MH, Kim S, Lee JH, et al. Magnetic tandem apoptosis for overcoming multidrug-resistant cancer. Nano Lett 2016;16:7455-60.
111. Truffi M, Colombo M, Sorrentino L, et al. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep 2018;8:1-11.
112. Miller-Kleinhenz J, Guo X, Qian W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 2018;152:47-62.
113. Liu E, Zhang M, Cui H, et al. Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharm Sin B 2018;8:956-68.
114. Weng H, Bejjanki NK, Zhang J, et al. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem Biophys Res Commun 2019;511:597-603.
115. Ma P, Xiao H, Yu C, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett 2017;17:928-37.
116. Guo S, Yao X, Jiang Q, et al. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced chemodynamic therapy. Front Pharmacol 2020;11:1-11.
117. Yen TY, Stephen ZR, Lin G, et al. Catalase-functionalized iron oxide nanoparticles reverse hypoxia-induced chemotherapeutic resistance. Adv Healthc Mater 2019;8:1-8.
118. Roleira FM, Tavares-da-Silva EJ, Varela CL, et al. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem 2015;183:235-58.
119. Wang J, Wang F, Li F, et al. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J Mater Chem B 2016;4:2954-62.
120. Keskin T, Yalcin S., Gunduz U. Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines. Inorg Nano-Metal Chem 2018;48:150-9.
121. Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials 2018;8:907.
122. Chen S, Liang Q, Liu E, et al. Curcumin/sunitinib co-loaded BSA-stabilized SPIOs for synergistic combination therapy for breast cancer. J Mater Chem B 2017;5:4060-72.
123. Rastegar R, Javar HA, Khoobi M, et al. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomedicine Biotechnol 2018;46:207-16.
124. Daglioglu C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surfaces B Biointerfaces 2017;156:175-85.
125. Wang D, Li X, Li X, et al. Magnetic and pH dual-responsive nanoparticles for synergistic drug-resistant breast cancer chemo/photodynamic therapy. Int J Nanomedicine 2019;14:7665-79.
126. Shenderova OA, Hu Z, Brenner D. Carbon family at the nanoscale BT - synthesis, properties and applications of ultrananocrystalline diamond. In: Gruen DM, Shenderova OA, Vul AY, editors. Netherlands: Springer; 2005. pp. 1-14.
127. Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon N Y 1997;35:1654-8.
128. Li D, Lin L, Fan Y, et al. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact 2020;6:729-39.
129. Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B 2019;7:277-85.
130. Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horizons 2019;6:434-69.
131. Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today 2016;21:585-97.
132. Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 2019;9:1401.
133. Bianco A, Pantarotto D, Kostarelos K, Prato M. Non-covalent complexes comprising carbon nanotubes. 2010. Available from: https://patents.google.com/patent/US7858648. [Last accessed on 18 Nov 2020].
134. Iannazzo D, Pistone A, Celesti C, et al. A smart nanovector for cancer targeted drug delivery based on graphene quantum dots. Nanomaterials 2019;9:282.
135. Tian L, Tao L, Li H, et al. Hollow mesoporous carbon modified with cRGD peptide nanoplatform for targeted drug delivery and chemo-photothermal therapy of prostatic carcinoma. Colloids Surfaces A Physicochem Eng Asp 2019;570:386-95.
136. Mahajan S, Patharkar A, Kuche K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm 2018;548:540-58.
137. Loh KP, Ho D, Chiu GNC, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater 2018;30:1802368.
138. Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm 2017;516:301-12.
139. Fan K, Xi J, Fan L, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 2018;9:1440.
140. Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol 2012;7:459-64.
141. Alexander A, Agrawal M, Yadav P, et al. Chapter 17 - Targeted delivery through carbon nanomaterials: applications in bioactive delivery systems Edited by Singh MR, Singh D, Kanwar JR, Chauhan NSBT-A and A in the D of NC for B and BA. Academic Press; 2020. pp. 509-24.
142. Pei X, Zhu Z, Gan Z, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep 2020;10:1-15.
143. Qian R, Maiti D, Zhong J, et al. Multifunctional nano-graphene based nanocomposites for multimodal imaging guided combined radioisotope therapy and chemotherapy. Carbon N Y 2019;149:55-62.
144. Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 2015;115:10816-906.
145. Costa PM, Bourgognon M, Wang JTW, Al-Jamal KT. Functionalized carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 2016;241:200-19.
146. Kim SW, Lee YK, Kim SH, et al. Covalent, non-covalent, encapsulated nanodrug regulate the fate of intra- and extracellular trafficking: impact on cancer and normal cells. Sci Rep 2017;7:6454.
147. Ali MS, Metwally AA, Fahmy RH, Osman R. Nanodiamonds: minuscule gems that ferry antineoplastic drugs to resistant tumors. Int J Pharm 2019;558:165-76.
148. Curcio M, Farfalla A, Saletta F, et al. Functionalized carbon nanostructures versus drug resistance: promising scenarios in cancer treatment. Molecules 2020;25:2102.
149. Hosnedlova B, Kepinska M, Fernandez C, et al. Carbon nanomaterials for targeted cancer therapy drugs: a critical review. Chem Rec 2019;19:502-22.
150. Mehra NK, Jain AK, Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug Discov Today 2018;23:1016-25.
151. de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf B Biointerfaces 2018;171:260-75.
152. Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018;286:64-73.
153. Jiang B, Zhou B, Lin Z, Liang H, Shen X. Recent advances in carbon nanomaterials for cancer phototherapy. Chem A Eur J 2019;25:3993-4004.
154. Mohajeri M, Behnam B, Sahebkar A. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. J. Cell Physiol 2019;234:298-319.
155. Chen D, Dougherty CA, Zhu K, Hong H. Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J Control Release 2015;210:230-45.
156. Dong X, Sun Z, Wang X, Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomed Nanotechnol Biol Med 2017;13:2271-80.
157. Meng Y, Wang S, Li C, et al. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials 2016;100:134-42.
158. Mohapatra S, Rout SR, Das RK, Nayak S, Ghosh SK. Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 2016;32:1611-20.
159. Zhao N, Fan W, Zhao X, et al. Polycation-carbon nanohybrids with superior rough hollow morphology for the NIR-II responsive multimodal therapy. ACS Appl Mater Interfaces 2020;12:11341-52.
160. Wang K, Yao H, Meng Y, et al. Specific aptamer-conjugated mesoporous silica-carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater 2015;16:196-205.
161. Li F, Wang Y, Zhang Z, Shen Y, Guo S. A chemo/photo- co-therapeutic system for enhanced multidrug resistant cancer treatment using multifunctional mesoporous carbon nanoparticles coated with poly (curcumin-dithiodipropionic acid). Carbon N Y 2017;122:524-37.
162. Tu X, Wang L, Cao Y, et al. Efficient cancer ablation by combined photothermal and enhanced chemo-therapy based on carbon nanoparticles/doxorubicin@SiO2 nanocomposites. Carbon N Y 2016;97:35-44.
163. Feng T, Ai X, An G, Yang P, Zhao Y. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016;10:4410-20.
164. Feng T, Chua HJ, Zhao Y. Carbon-dot-mediated co-administration of chemotherapeutic agents for reversing cisplatin resistance in cancer therapy. ChemNanoMat 2018;4:801-6.
165. Ren W, Chen S, Liao Y, et al. Near-infrared fluorescent carbon dots encapsulated liposomes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro. Colloids Surfaces B Biointerfaces 2019;174:384-92.
166. Chiu SH, Gedda G, Girma WM, et al. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 2016;46:151-64.
167. Thakur M, Mewada A, Pandey S, et al. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater Sci Eng C 2016;67:468-77.
168. Sui X, Luo C, Wang C, et al. Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomed Nanotechnol Biol Med 2016;12:1997-2006.
169. Shenderova OA, Ciftan Hens SA. Nanodiamonds. Springer Handbook of Nanomaterials. Berlin Heidelberg: Springer; 2013. pp. 263-300.
170. In: Varin RA, Czujko T, Wronski ZS, editors. Carbons and Nanocarbons BT - Nanomaterials for Solid State Hydrogen Storage. US: Springer; 2009. pp. 291-320.
171. Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Amphipathic nanodiamond supraparticles for anticancer drug loading and delivery. ACS Appl Mater Interfaces 2019;11:18978-87.
172. Zhu H, Wang Y, Hussain A, et al. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells. J Mater Chem B 2017;5:3531-40.
173. Lam ATN, Yoon JH, Ly NH, Joo SW. Electrostatically self-assembled quinazoline-based anticancer drugs on negatively-charged nanodiamonds for overcoming the chemoresistances in lung cancer cells. Biochip J 2018;12:163-71.
174. Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces 2017;9:11780-9.
175. Li TF, Li K, Zhang Q, et al. Dendritic cell-mediated delivery of doxorubicin-polyglycerol-nanodiamond composites elicits enhanced anti-cancer immune response in glioblastoma. Biomaterials 2018;181:35-52.
176. Li TF, Xu YH, Li K, et al. Doxorubicin-polyglycerol-nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater 2019;86:381-94.
177. Chen Z, Wang C, Li TF, et al. Doxorubicin conjugated with nanodiamonds and in free form commit glioblastoma cells to heterodromous fates. Nanomedicine 2019;14:335-51.
178. Chen Z, Yuan SJ, Li K, et al. Doxorubicin-polyglycerol-nanodiamond conjugates disrupt STAT3/IL-6-mediated reciprocal activation loop between glioblastoma cells and astrocytes. J Control Release 2020;320:469-83.
179. Yuan SJ, Xu YH, Wang C, et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnol 2019;17:110.
180. Tiwari H, Karki N, Pal M, et al. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: the synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf B Biointerfaces 2019;178:452-9.
181. Tran TH, Nguyen HT, Pham TT, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces 2015;7:28647-55.
182. Thapa RK, Youn YS, Jeong JH, Choi HG, Yong CS, Kim JO. Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf B Biointerfaces 2016;143:271-7.
183. Huang C, Hu X, Hou Z, Ji J, Li Z, Luan Y. Tailored graphene oxide-doxorubicin nanovehicles via near-infrared dye-lactobionic acid conjugates for chemo-photothermal therapy. J. Colloid Interface Sci 2019;545:172-83.
184. Han C, Zhang C, Ma T, et al. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater 2018;77:268-81.
185. Guo L, Shi H, Wu H, et al. Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon N Y 2016;107:87-99.
186. Luo Y, Cai X, Li H, Lin Y, Du D. Hyaluronic acid-modified multifunctional Q-graphene for targeted killing of drug-resistant lung cancer cells. ACS Appl Mater Interfaces 2016;8:4048-55.
187. Chatterjee N, Yang J, Kim S, Joo SW, Choi J. Diameter size and aspect ratio as critical determinants of uptake, stress response, global metabolomics and epigenetic alterations in multi-wall carbon nanotubes. Carbon N Y 2016;108:529-40.
188. Donaldson K, Poland CA. Nanotoxicology: new insights into nanotubes. Nature Nanotechnol 2009;4:708-10.
189. Dong X, Sun Z, Wang X, et al. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv 2017;24:143-51.
190. Raza K, Kumar D, Kiran C, et al. Conjugation of docetaxel with multiwalled carbon nanotubes and codelivery with piperine: Implications on pharmacokinetic profile and anticancer activity. Mol Pharm 2016;13:2423-32.
191. Zhang M, Wang W, Wu F, Yuan P, Chi C, Zhou N. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon N Y 2017;123:70-83.
192. Guven A, Rusakova IA, Lewis MT, Wilson LJ. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 2012;33:1455-61.
193. Guven A, Villares GJ, Hilsenbeck SG, et al. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater 2017;58:466-78.
194. Ghosh M, Das PK. Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells. Colloids Surfaces B Biointerfaces 2016;142:367-76.
195. Razzazan A, Atyabi F, Kazemi B, Dinarvand R. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C 2016;62:614-25.