REFERENCES

1. Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 2017;17:286-301.

2. Konieczkowski DJ, Johannessen CM, Garraway LA. A convergence-based framework for cancer drug resistance. Cancer Cell 2018;33:801-15.

3. Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2015;18:1-17.

4. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013;13:714-26.

5. Gray R, Bradley R, Braybrooke J, Liu Z, Peto R, et al. Increasing the dose intensity of chemotherapy by more frequent administration or sequential scheduling: a patient-level meta-analysis of 37 298 women with early breast cancer in 26 randomised trials. The Lancet 2019;393:1440-52.

6. Smorodinsky-Atias K, Soudah N, Engelberg D. Mutations that confer drug-resistance, oncogenicity and intrinsic activity on the ERK MAP kinases—current state of the art. Cells 2020;9:E129.

7. Bell CC, Gilan O. Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2019;122:465-72.

8. Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, et al. Novel and alternative targets against breast cancer stemness to combat chemoresistance. Front Oncol 2019;9:1003. 1-19

9. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019;575:299-309.

10. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 2006;13:1238-41.

11. Begicevic RR, Falasca M. ABC Transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18:E2362.

12. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer 2013;13:714-26.

13. Heryanto YD, Achmad A, Taketomi-Takahashi A, Tsushima Y. In vivo molecular imaging of cancer stem cells. Am J Nucl Med Mol Imaging 2015;5:14-26.

14. Gao J, Feng SS, Guo Y. Nanomedicine against multidrug resistance in cancer treatment. Nanomedicine 2012;7:465-8.

15. Steinbichler TB, Dudas J, Skvortsov S, Ganswindt U, Riechelmann H, et al. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol 2018;53:156-67.

16. Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates 2019;46:100645.

17. Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC transporter-mediated multidrug-resistant cancer. Adv Exp Med Biol 2019;1141:549-80.

18. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews Cancer 2018;18:452-64.

19. Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat 2012;15:70-80.

20. Chen Z, Shi T, Zhang L, Zhu P, Deng M, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 2016;370:153-64.

21. Liu X. ABC family transporters. In: Pan G, editor. Drug Transporters in Drug Disposition, Effects and Toxicity. Singapore: Springer Singapore; 2019. pp. 13-100.

22. Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem 2011;50:161-78.

23. Bloise E, Matthews SG. Chapter 19 - multidrug resistance P-Glycoprotein (P-gp), glucocorticoids, and the stress response. Stress Series: Elsevier; 2019. pp. 227-41.

24. Stouch TR, Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Del Rev 2002;54:315-28.

25. Elmeliegy M, Vourvahis M, Guo C, Wang DD. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: review of clinical drug-drug interaction studies. Clin Pharmacokinet 2020; doi: 10.1007/s40262-020-00867-1.

26. Yakusheva EN, Titov DS. Structure and function of multidrug resistance protein 1. Biochemistry (Mosc) 2018;83:907-29.

27. Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond competitive inhibition: regulation of ABC transporters by kinases and protein-protein interactions as potential mechanisms of drug-drug interactions. Drug Metab Dispos 2018;46:567-80.

28. Tolios A, De Las Rivas J, Hovig E, Trouillas P, Scorilas A, et al. Computational approaches in cancer multidrug resistance research: Identification of potential biomarkers, drug targets and drug-target interactions. Drug Resist Updat 2020;48:100662.

29. Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020;50:100682.

30. Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018;41:1-25.

31. Lee SM, Kim HJ, Kim SY, Kwon MK, Kim S, et al. Drug-loaded gold plasmonic nanoparticles for treatment of multidrug resistance in cancer. Biomaterials 2014;35:2272-82.

32. Calderwood SK. Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond B Biol Sci 2018;373:20160524.

33. PubChem. Doxorubicin. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Doxorubicin. [Last accessed on 26 May 2020].

34. Wijdeven RH, Pang B, Assaraf YG, Neefjes J. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resist Updat 2016;28:65-81.

35. Capeloa T, Benyahia Z, Zampieri LX, Blackman M, Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 2020;98:181-91.

36. PubChem. Cisplatin. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/trans-Dichlorodiamineplatinum_II. [Last accessed on 26 May 2020].

37. Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 2016;106:27-36.

38. Morris PG, Fornier MN. Microtubule active agents: beyond the taxane frontier. Clin Cancer Res 2008;14:7167-72.

39. NIH. Docetaxel. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012.

40. PubChem. Docetaxel. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Docetaxel. [Last accessed on 26 May 2020].

41. Farha NG, Kasi A. Docetaxel. StatPearls. Treasure Island (FL): StatPearls Publishing LLC.; 2020.

42. Lee S, Kim K, Ho JN, Jin H, Byun SS, et al. Analysis of resistance-associated gene expression in docetaxel-resistant prostate cancer cells. Oncol Lett 2017;14:3011-8.

43. Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 2012;64:706-21.

44. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2018;31:15-25.

45. Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res 2014;34:547-50.

46. NIH. Precision medicine in cancer treatment. Available from: https://www.cancer.gov/about-cancer/treatment/types/precision-medicine. [Last accessed on 26 May 2020].

47. Chatterjee N, Bivona TG. Polytherapy and targeted cancer drug resistance. Trends Cancer 2019;5:170-82.

48. Sabnis AJ, Bivona TG. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends Mol Med 2019;25:185-97.

49. Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: clinical evidence. Drug Resistance Updates 2019;47:100646.

50. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012;92:414-7.

51. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017;17:20-37.

52. Su H, Wang Y, Gu Y, Bowman L, Zhao J, et al. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018;38:3-24.

53. Stepensky D. Prediction of drug disposition on the basis of its chemical structure. Clin Pharmacokinet 2013;52:415-31.

54. Gulati NM, Stewart PL, Steinmetz NF. Bioinspired shielding strategies for nanoparticle drug delivery applications. Mol Pharm 2018;15:2900-9.

55. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 2004;377:159-69.

56. Morales-Cruz M, Delgado Y, Castillo B, Figueroa CM, Molina AM, et al. Smart Targeting to improve cancer therapeutics. Drug Des Devel Ther 2019;13:3753-72.

57. Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano 2017;11:9594-613.

58. Thomas OS, Weber W. Overcoming physiological barriers to nanoparticle delivery—are we there yet? Frontiers in Bioengineering and Biotechnology 2019;7:415.

59. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, et al. The entry of nanoparticles into solid tumours. Nat Mater 2020; doi: 10.1038/s41563-019-0566-2.

60. Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015;141:769-84.

61. Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, et al. Nanotheranostics targeting the tumor microenvironment. Front Bioeng Biotechnol 2019;7:197.

62. ClinicalTrials.gov. A Study of CriPec® Docetaxel Given to Patients With Solid Tumours (NAPOLY). Available from: https://clinicaltrials.gov/ct2/show/NCT02442531. [Last accessed on 26 May 2020].

63. Atrafi F, van Eerden RAG, van Hylckama Vlieg MAM, Oomen-de Hoop E, de Bruijn P, et al. Intratumoral comparison of nanoparticle entrapped docetaxel (CPC634) with conventional docetaxel in patients with solid tumors. Clin Cancer Res 2020; doi: 10.1158/1078-0432.CCR-20-0008.

64. Zhang M, Chen X, Li C, Shen X. Charge-reversal nanocarriers: an emerging paradigm for smart cancer nanomedicine. J Control Release 2019;319:46-62.

65. Xu J, Gulzar A, Yang D, Gai S, He F, et al. Tumor self-responsive upconversion nanomedicines for theranostic applications. Nanoscale 2019;11:17535-56.

66. De Santis MC, Porporato PE, Martini M, Morandi A. Signaling pathways regulating redox balance in cancer metabolism. Front Oncol 2018;8:126.

67. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 1998;95:6803-8.

68. Benham AM. Endoplasmic reticulum redox pathways: in sickness and in health. FEBS J 2019;286:311-21.

69. Jose J, Kumar R, Harilal S, Mathew GE, Parambi DGT, et al. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res Int 2019; doi: 10.1007/s11356-019-07231-2.

70. Chandrasekharan P, Tay ZW, Hensley D, Zhou XY, Fung BK, et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics 2020;10:2965-81.

71. Wang H, Agarwal P, Liang Y, Xu J, Zhao G, et al. Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials 2018;180:265-78.

72. Hou Y, Sun Z, Rao W, Liu J. Nanoparticle-mediated cryosurgery for tumor therapy. Nanomedicine 2018;14:493-506.

73. Papa AL, Korin N, Kanapathipillai M, Mammoto A, Mammoto T, et al. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. Biomaterials 2017;139:187-94.

74. Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016;45:1457-501.

75. Ai X, Mu J, Xing B. Recent advances of light-mediated theranostics. Theranostics 2016;6:2439-57.

76. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 2009;110:2620-40.

77. Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 2002;1:225-36.

78. Kochevar IE. UV-induced protein alterations and lipid oxidation in erythrocyte membranes. Photochem photobiol 1990;52:795-800.

79. Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 2017;32:1909-18.

80. He S, Song J, Qu J, Cheng Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev 2018;47:4258-78.

81. Zhao J, Zhong D, Zhou S. NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J Mater Chem B 2018;6:349-65.

82. Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 2015;11:2191-208.

83. Liu B, Li C, Cheng Z, Hou Z, Huang S, Lin J. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater Sci 2016;4:890-909.

84. Khan I, Tang E, Arany P. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci Rep 2015;5:10581.

85. Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 2014;14:199-208.

86. Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res 2005;127:208-23.

87. Doughty ACV, Hoover AR, Layton E, Murray CK, Howard EW, et al. Nanomaterial applications in photothermal therapy for cancer. Materials (Basel, Switzerland) 2019;12:779.

88. Wang L, Lin X, Wang J, Hu Z, Ji Y, et al. Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Funct Mater 2014;24:4229-39.

89. Ashikbayeva Z, Tosi D, Balmassov D, Schena E, Saccomandi P, et al. Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer. Nanomaterials (Basel) 2019;9:E1195.

90. Svaasand LO, Gomer CJ, Morinelli E. On the physical rationale of laser induced hyperthermia. Lasers Med Sci 1990;5:121-8.

91. Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev 2018;47:2280-97.

92. Samadi A, Klingberg H, Jauffred L, Kjaer A, Bendix PM, et al. Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 2018;10:9097-107.

93. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380-7.

94. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011;61:250-81.

95. Sorrin AJ, Kemal Ruhi M, Ferlic NA, Karimnia V, Polacheck WJ, et al. Photodynamic therapy and the biophysics of the tumor microenvironment. Photochem Photobiol 2020;96:232-59.

96. Spring BQ, Rizvi I, Xu N, Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem Photobiol Sci 2015;14:1476-91.

97. Russell LM, Liu CH, Grodzinski P. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials 2020;242:119926.

98. Aldieri E, Bergandi L, Riganti C, Costamagna C, Bosia A, et al. Doxorubicin induces an increase of nitric oxide synthesis in rat cardiac cells that is inhibited by iron supplementation. Toxicol Appl Pharmacol 2002;185:85-90.

99. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, et al. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 2005;65:516-25.

100. Delou JMA, Souza ASO, Souza LCM, Borges HL. Highlights in resistance mechanism pathways for combination therapy. Cells 2019;8:1013.

101. Hu CMJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 2010;1:323-34.

102. Jiang Y, Guo Z, Fang J, Wang B, Lin Z, et al. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer. Mater Sci Eng C Mater Biol Appl 2020;107:110224.

103. Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, et al. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: an update. Drug Resist Updat 2020;49:100681.

104. Hu CM, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 2012;83:1104-11.

105. Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med 2017;14:212-27.

106. Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: an emerging treatment option for solid tumors. Adv Sci (Weinh) 2017;4:1600106.

107. Sagar V, Nair M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin Drug Deliv 2018;15:137-52.

108. Goodman AM, Neumann O, Nørregaard K, Henderson L, Choi MR, et al. Near-infrared remotely triggered drug-release strategies for cancer treatment. Proc Natl Acad Sci U S A 2017;114:12419-24.

109. Ke W, Yu P, Wang J, Wang R, Guo C, et al. MCF-7/ADR cells (re-designated NCI/ADR-RES) are not derived from MCF-7 breast cancer cells: a loss for breast cancer multidrug-resistant research. Med Oncol 2011;28 Suppl 1:S135-41.

110. Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, et al. Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 2014;35:756-65.

111. Chen S, Lei Q, Qiu WX, Liu LH, Zheng DW, et al. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials 2017;117:92-104.

112. Zhang Z, Xu S, Wang Y, Yu Y, Li F, et al. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J Colloid Interface Sci 2018;509:47-57.

113. Kang S, Kang K, Chae A, Kim YK, Jang H, et al. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale 2019;11:15173-83.

114. Zhang Y, Sha R, Zhang L, Zhang W, Jin P, et al. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer. Nat Commun 2018;9:4236.

115. Zeng L, Pan Y, Tian Y, Wang X, Ren W, et al. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials 2015;57:93-106.

116. Jiao X, Wang Z, Wang F, Wen Y. Dual stimuli-responsive controlled release nanocarrier for multidrug resistance cancer therapy. Chemphyschem 2019;20:3271-5.

117. Dong X, Yin W, Zhang X, Zhu S, He X, et al. Intelligent MoS2 nanotheranostic for targeted and Enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl Mater Interfaces 2018;10:4271-84.

118. Guo R, Tian Y, Wang Y, Yang W. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer. Adv Funct Mater 2017;27:1606398.

119. Feng L, Li K, Shi X, Gao M, Liu J, et al. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv Healthc Mater 2014;3:1261-71.

120. Zeng X, Luo M, Liu G, Wang X, Tao W, et al. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci (Weinh) 2018;5:1800510.

121. Wu F, Zhang M, Chu X, Zhang Q, Su Y, et al. Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem Eng J 2019;370:387-99.

122. Li H, Liu C, Zeng YP, Hao YH, Huang JW, et al. Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Appl Mater Interfaces 2016;8:31510-23.

123. Yao C, Wang P, Li X, Hu X, Hou J, et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv Mater 2016;28:9341-8.

124. Wang L, Sun Q, Wang X, Wen T, Yin JJ, et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J Am Chem Soc 2015;137:1947-55.

125. Pai CL, Chen YC, Hsu CY, Su HL, Lai PS. Carbon nanotube-mediated photothermal disruption of endosomes/lysosomes reverses doxorubicin resistance in MCF-7/ADR cells. J Biomed Nanotechnol 2016;12:619-29.

126. Kalluru P, Vankayala R, Chiang CS, Hwang KC. Unprecedented “All-in-One” lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of nir light triggered chemo-photodynamic therapy of tumors. Adv Funct Mater 2016;26:7908-20.

127. Ding Y, Du C, Qian J, Dong CM. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Lett 2019;19:4362-70.

128. Wei G, Yang G, Wei B, Wang Y, Zhou S. Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer. Acta Biomater 2019;100:365-77.

129. Peng Y, Nie J, Cheng W, Liu G, Zhu D, et al. A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater Sci 2018;6:1084-98.

130. Lai GM, Chen YN, Mickley LA, Fojo AT, Bates SE. P-glycoprotein expression and schedule dependence of adriamycin cytotoxicity in human colon carcinoma cell lines. Int J Cancer 1991;49:696-703.

131. Ai F, Sun T, Xu Z, Wang Z, Kong W, et al. An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Trans 2016;45:13052-60.

132. Zhang J, Ma Y, Hu K, Feng Y, Chen S, et al. Surface coordination of black phosphorus with modified cisplatin. Bioconjug Chem 2019;30:1658-64.

133. Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, et al. Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces 2015;7:28647-55.

134. Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A. Role of the drug transporter ABCC3 in breast cancer chemoresistance. PLoS One 2016;11:e0155013.

135. Roll JD, Rivenbark AG, Jones WD, Coleman WB. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 2008;7:1-15.

136. Poulose AC, Veeranarayanan S, Mohamed MS, Aburto RR, Mitcham T, et al. Multifunctional Cu2-xTe nanocubes mediated combination therapy for multi-drug resistant MDA MB 453. Sci Rep 2016;6:35961.

137. Singh G, Odriozola L, Guan H, Kennedy CR, Chan AM. Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line. BMC Cancer 2011;11:490.

138. Li R, Wu R, Zhao L, Wu M, Yang L, et al. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 2010;4:1399-408.

139. Hu M, Liu Y, Deng C, Han R, Jia Y, et al. Enhanced invasiveness in multidrug resistant leukemic cells is associated with overexpression of P-glycoprotein and cellular inhibitor of apoptosis protein. Leuk Lymphoma 2011;52:1302-11.

140. Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target 2015;23:605-18.

141. Zhong Y, Zhang J, Cheng R, Deng C, Meng F, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J Control Release 2015;205:144-54.

142. Chanmee T, Ontong P, Itano N. Hyaluronan: a modulator of the tumor microenvironment. Cancer Lett 2016;375:20-30.

143. PubChem. Folic acid. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Folic-acid. [Last accessed on 26 May 2020].

144. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, et al. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine 2019;14:1633-57.

145. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, et al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv Transl Res 2018;8:1545-63.

146. PubChem. Quercetin. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Quercetin. [Last accessed on 26 May 2020].

147. PubChem. 3-Methyladenine. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/3-Methyladenine. [Last accessed on 26 May 2020].

148. PubChem. Chloroquine. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chloroquine. [Last accessed on 26 May 2020].

149. PubChem. Tocophersolan. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tocophersolan. [Last accessed on 26 May 2020].

150. PubChem. 1-Tetradecanol. National Center for Biotechnology Information, USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1-Tetradecanol. [Last accessed on 26 May 2020].

151. PubChem. Irinotecan. National Center for Biotechnology Information, USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Irinotecan. [Last accessed on 26 May 2020].

152. Reyhanoglu G, Smith T. Irinotecan. StatPearls. Treasure Island (FL): StatPearls Publishing LLC.; 2020.

153. Huang J, Si L, Jiang L, Fan Z, Qiu J, et al. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism. Int J Pharm 2008;356:351-3.

154. PubChem. Poloxamer 188. National Center for Biotechnology Information. USA: NIH; 2020. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Poloxamer-188. [Last accessed on 26 May 2020].

155. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016;99:28-51.

156. Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, et al. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019;145:1949-76.

157. Li J, Zhang W, Gao Y, Tong H, Chen Z, et al. Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency. J Mater Chem B 2020;8:546-57.

158. Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 2018;9:6.

159. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 2016;34:1427-41.

160. Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 2019;116:206-26.

161. Lu H, Stenzel MH. Multicellular tumor spheroids (MCTS) as a 3D in vitro evaluation tool of nanoparticles. Small 2018;14:e1702858.

162. Walker JV, Nitiss JL. DNA topoisomerase II as a target for cancer chemotherapy. Cancer Invest 2002;20:570-89.

163. Tang S, Chen M, Zheng N. Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 2014;10:3139-44.

164. Xiao JW, Fan SX, Wang F, Sun LD, Zheng XY, et al. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale 2014;6:4345-51.

165. Jalani G, Tam V, Vetrone F, Cerruti M. Seeing, targeting and delivering with upconverting nanoparticles. J Am Chem Soc 2018;140:10923-31.

166. Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett 2011;11:2560-6.

167. Li W, Zamani R, Rivera Gil P, Pelaz B, Ibanez M, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc 2013;135:7098-101.

168. Wang S, Riedinger A, Li H, Fu C, Liu H, et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano 2015;9:1788-800.

169. Chen X, Yang J, Wu T, Li L, Luo W, et al. Nanostructured binary copper chalcogenides: synthesis strategies and common applications. Nanoscale 2018;10:15130-63.

170. Tian Q, Tang M, Sun Y, Zou R, Chen Z, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 2011;23:3542-7.

171. Wu F, Zhang M, Lu H, Liang D, Huang Y, et al. Triple stimuli-responsive magnetic hollow porous carbon-based nanodrug delivery system for magnetic resonance imaging-guided synergistic photothermal/chemotherapy of cancer. ACS Appl Mater Interfaces 2018;10:21939-49.

172. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2007;2:107-18.

173. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019;7:167.

174. Agrawal A, Johns RW, Milliron DJ. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu Rev Mater Res 2017;47:1-31.

175. Kohout C, Santi C, Polito L. Anisotropic gold nanoparticles in biomedical applications. Int J Mol Sci 2018;19:3385.

176. Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Theranostics 2015;5:357-70.

177. Venditti I. Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. Bioengineering (Basel) 2019;6:53.

178. Chauhan VP, Popović Z, Chen O, Cui J, Fukumura D, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed Engl 2011;50:11417-20.

179. Samhadaneh DM, Chu S, Maysinger D, Stochaj U. How could gold nanourchins be applied in the clinic? Nanomedicine 2019;15:829-32.

180. Kodiha M, Hutter E, Boridy S, Juhas M, Maysinger D, et al. Gold nanoparticles induce nuclear damage in breast cancer cells which is further amplified by hyperthermia. CMLS 2014;71:4259-73.

181. Karimi M, Zangabad PS, Mehdizadeh F, Malekzad H, Ghasemi A, et al. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale 2017;9:1356-92.

182. Knowlton AA. NFkappaB, heat shock proteins, HSF-1, and inflammation. Cardiovasc Res 2006;69:7-8.

183. Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Dickinson JL. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential. Mar Drugs 2015;13:2327-46.

184. Pons-Tostivint E, Thibault B, Guillermet-Guibert J. Targeting PI3K Signaling in Combination Cancer Therapy. Trends Cancer 2017;3:454-69.

185. Bhat P, Kriel J, Shubha Priya B, Basappa, Shivananju NS, Loos B. Modulating autophagy in cancer therapy: advancements and challenges for cancer cell death sensitization. Biochem Pharmacol 2018;147:170-82.

186. Tessitore G, Maurizio SL, Sabri T, Capobianco JA. Intrinsic time-tunable emissions in core-shell upconverting nanoparticle systems. Angew Chem Int Ed Engl 2019;58:9742-51.

187. Oliveira H, Bednarkiewicz A, Falk A, Fröhlich E, Lisjak D, et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): recommendations from the European Upconversion Network (COST Action CM1403). Adv Healthc Mater 2019;8:e1801233.

188. Hu XY, Jia K, Cao Y, Li Y, Qin S, et al. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery. Chemistry (Easton) 2015;21:1208-20.

189. Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev 2014;43:3957-75.

190. Liu K, Liu K, Liu J, Ren Q, Zhao Z, et al. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020;12:2902-13.

191. Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 2015;44:2713-31.

192. Agarwal V, Chatterjee K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale 2018;10:16365-97.

193. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013;5:263-75.

194. Liu T, Wang C, Gu X, Gong H, Cheng L, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 2014;26:3433-40.

195. Wang C, Bai J, Liu Y, Jia X, Jiang X. Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater Sci Engineering 2016;2:2011-7.

196. Wang Y, Zhang F, Wang Q, Yang P, Lin H, et al. Hierarchical MoSe2 nanoflowers as novel nanocarriers for NIR-light-mediated synergistic photo-thermal/dynamic and chemo-therapy. Nanoscale 2018;10:14534-45.

197. Wang Y, Zhao J, Chen Z, Zhang F, Wang Q, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: Multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating. Biomaterials 2019;217:119282.

198. Liao W, Zhang L, Zhong Y, Shen Y, Li C, et al. Fabrication of ultrasmall WS2 quantum dots-coated periodic mesoporous organosilica nanoparticles for intracellular drug delivery and synergistic chemo-photothermal therapy. Onco Targets Ther 2018;11:1949-60.

199. Tammi MI, Oikari S, Pasonen-Seppanen S, Rilla K, Auvinen P, et al. Activated hyaluronan metabolism in the tumor matrix - Causes and consequences. Matrix Biol 2019;78-79:147-64.

200. Muzzio M, Li J, Yin Z, Delahunty IM, Xie J, et al. Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale 2019;11:18946-67.

201. Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine 2018;14:977-90.

202. Li J, Wang S, Shi X, Shen M. Aqueous-phase synthesis of iron oxide nanoparticles and composites for cancer diagnosis and therapy. Adv Colloid Interface Sci 2017;249:374-85.

203. Wang M, Hou Z, Al Kheraif AA, Xing B, Lin J. Mini Review of TiO2 -based multifunctional nanocomposites for near-infrared light-responsive phototherapy. Adv Healthc Mater 2018;7:e1800351.

204. Raja G, Cao S, Kim DH, Kim TJ. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater Sci Eng C Mater Biol Appl 2020;107:110303.

205. Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, et al. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials (Basel) 2020;10:387.

206. Popov AL, Han B, Ermakov AM, Savintseva IV, Ermakova ON, et al. PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity. Mater Sci Eng C Mater Biol Appl 2020;108:110494.

207. Huo D, Zhu J, Chen G, Chen Q, Zhang C, et al. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat Commun 2019;10:3051.

208. Tian Y, Yi W, Bai L, Zhang P, Si J, et al. Lentinan in-situ coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy. Int J Biol Macromol 2019;137:904-11.

209. Chang D, Lim M, Goos J, Qiao R, Ng YY, et al. Biologically targeted magnetic hyperthermia: potential and limitations. Front Pharmacol 2018;9:831.

210. Mohapatra J, Xing M, Liu JP. Inductive thermal effect of ferrite magnetic nanoparticles. Materials (Basel) 2019;12:3208.

211. Estelrich J, Escribano E, Queralt J, Busquets MA. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 2015;16:8070-101.

212. Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater 2018;30:e1802368.

213. Augustine S, Singh J, Srivastava M, Sharma M, Das A, et al. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017;5:901-52.

214. Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol 2019;16:18.

215. Yang K, Feng L, Liu Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv Drug Deliv Rev 2016;105:228-41.

216. Vankayala R, Hwang KC. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv Mater 2018;30:e1706320.

217. Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019;6:434-69.

218. de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2019;7:3534-51.

219. Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci 2018;17:1515-33.

220. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013;65:1964-2015.

221. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A. Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 2013;7:2891-7.

222. Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in biomedicine. Top Curr Chem (Cham) 2020;378:15.

223. Kam NWS, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 2005;102:11600-5.

224. Tran HQ, Batul R, Bhave M, Yu A. Current advances in the utilization of polydopamine nanostructures in biomedical therapy. Biotechnol J 2019;14:e1900080.

225. Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018;290:56-74.

226. Choi JR, Yong KW, Choi JY, Nilghaz A, Lin Y, et al. Black phosphorus and its biomedical applications. Theranostics 2018;8:1005-26.

227. Shao J, Xie H, Huang H, Li Z, Sun Z, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 2016;7:12967.

228. Fu W, Zhou W, Chu PK, Yu XF. Inherent chemotherapeutic anti-cancer effects of low-dimensional nanomaterials. Chemistry (Easton) 2019;25:10995-1006.

229. Qin L, Jiang S, He H, Ling G, Zhang P. Functional black phosphorus nanosheets for cancer therapy. J Control Release 2020;318:50-66.

230. Li Z, Zhang T, Fan F, Gao F, Ji H, et al. Piezoelectric materials as sonodynamic sensitizers to safely ablate tumors: a case study using black phosphorus. J Phys Chem Lett 2020;11:1228-38.

231. Wan S, Zhang B, Li S, He B, Pu Y. Combination of PEG-decorated black phosphorus nanosheets and immunoadjuvant for photoimmunotherapy of melanoma. J Mater Chem B 2020; doi: 10.1039/d0tb00434k.

232. Yang B, Ding L, Chen Y, Shi J. Augmenting tumor-starvation therapy by cancer cell autophagy inhibition. Adv Sci (Weinh) 2020;7:1902847.

233. Yang X, Liu G, Shi Y, Huang W, Shao J, et al. Nano-black phosphorus for combined cancer phototherapy: recent advances and prospects. Nanotechnology 2018;29:222001.

234. Aggarwal M, Saxena R, Sinclair E, Fu Y, Jacobs A, et al. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ 2016;23:1615-27.

235. Yang H, Mao H, Wan Z, Zhu A, Guo M, et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 2013;34:9124-33.

236. Owens EA, Lee S, Choi J, Henary M, Choi HS. NIR fluorescent small molecules for intraoperative imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:828-38.

237. Xue X, Lindstrom A, Li Y. Porphyrin-based nanomedicines for cancer treatment. Bioconjug Chem 2019;30:1585-603.

238. Wang L, Chang Y, Feng Y, Li X, Cheng Y, et al. Nitric oxide stimulated programmable drug release of nanosystem for multidrug resistance cancer therapy. Nano Lett 2019;19:6800-11.

239. Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V. Manufacturing nanomaterials: from research to industry. Manufacturing Rev 2014;1:11.

240. Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020;11:328-55.

241. Souto EB, Silva GF, Dias-Ferreira J, Zielinska A, Ventura F, et al. Nanopharmaceutics: part II-production scales and clinically compliant production methods. Nanomaterials (Basel) 2020;10:455.

242. Yang Y, Aw J, Xing B. Nanostructures for NIR light-controlled therapies. Nanoscale 2017;9:3698-718.

243. Zhang C, Li D, Pei P, Wang W, Chen B, et al. Rod-based urchin-like hollow microspheres of Bi2S3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation. Biomaterials 2020;237:119835.

244. Wu S, Liu X, Ren J, Qu X. Glutathione depletion in a benign manner by MoS2 -based nanoflowers for enhanced hypoxia-irrelevant free-radical-based cancer therapy. Small 2019;15:e1904870.

245. Wang R, Zhou L, Wang W, Li X, Zhang F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun 2017;8:14702.

246. Huang LY, Zhu S, Cui R, Zhang M. Noninvasive in vivo imaging in the second near-infrared window by inorganic nanoparticle-based fluorescent probes. Anal Chem 2020;92:535-42.

247. Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. J Photochem Photobiol B 2017;170:197-207.

248. Mussttaf RA, Jenkins DFL, Jha AN. Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 2019;95:120-43.

249. Boey A, Ho HK. All roads lead to the liver: metal nanoparticles and their implications for liver health. Small 2020; doi: 10.1002/smll.202000153.

250. Lindén M. Biodistribution and excretion of intravenously injected mesoporous silica nanoparticles: implications for drug delivery efficiency and safety. The Enzymes: Academic Press; 2018. pp. 155-80.

251. Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 2018;38:25-40.

252. Zamboni WC, Szebeni J, Kozlov SV, Lucas AT, Piscitelli JA, et al. Animal models for analysis of immunological responses to nanomaterials: challenges and considerations. Adv Drug Deliv Rev 2018;136-137:82-96.

253. Dawidczyk CM, Russell LM, Searson PC. Recommendations for benchmarking preclinical studies of nanomedicines. Cancer Res 2015;75:4016-20.

254. Shamsi M, Mohammadi A, Manshadi MKD, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019;307:150-65.

255. Yao C, Akakuru OU, Stanciu SG, Hampp N, Jin Y, et al. Effect of elasticity on the phagocytosis of micro/nanoparticles. J Mater Chem B 2020;8:2381-92.

256. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010;70:440-6.

257. Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019;11:81.

258. Ai X, Hu M, Wang Z, Lyu L, Zhang W, et al. Enhanced cellular ablation by attenuating hypoxia status and reprogramming tumor-associated macrophages via NIR light-responsive upconversion nanocrystals. Bioconjug Chem 2018;29:928-38.

259. Duan M, Xia F, Li T, Shapter JG, Yang S, et al. Matrix metalloproteinase-2-targeted superparamagnetic Fe3O4-PEG-G5-MMP2@Ce6 nanoprobes for dual-mode imaging and photodynamic therapy. Nanoscale 2019;11:18426-35.

260. Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv 2019;16:271-85.

261. Gao W, Wang Z, Lv L, Yin D, Chen D, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 2016;6:1131-44.

262. Busquets MA, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood-brain barrier: when physics rises to a challenge. Nanomaterials 2015;5:2231-48.

263. Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat Commun 2017;8:15594.

264. Luo YH, Chang LW, Lin P. Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biomed Res Int 2015;2015:143720.

265. Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, et al. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci 2020;8:1490-501.

266. Baeza A. Tumor targeted nanocarriers for immunotherapy. Molecules 2020;25:1508.

267. Kobayashi H, Choyke PL. Near-infrared photoimmunotherapy of cancer. Acc Chem Res 2019;52:2332-9.

268. Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol 2017;24:1161-80.

269. Feng J, Byrne NM, Al Jamal W, Coulter JA. Exploiting current understanding of hypoxia mediated tumour progression for nanotherapeutic development. Cancers (Basel) 2019;11:E1989.

270. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 2018;217:2291-8.

271. Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, et al. Bioconjugated oligonucleotides: recent developments and therapeutic applications. Bioconjug Chem 2019;30:366-83.

272. Ju E, Li T, Ramos da Silva S, Gao SJ. Gold nanocluster-mediated efficient delivery of Cas9 Protein through pH-induced assembly-disassembly for inactivation of virus oncogenes. ACS Appl Mater Interfaces 2019;11:34717-24.

273. Wang P, Zhang L, Zheng W, Cong L, Guo Z, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl 2018;57:1491-6.

274. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med 2019;4:e10143.

275. NIH Clinical Trials. Available from: http://clinicaltrials.gov/ct2/home. [Last accessed on 26 May 2020].

276. Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A 2019;116:18590-6.

277. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, et al. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016;10:2436-46.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/