REFERENCES

1. Zeng AL, Yan W, Liu YW, Wang Z, Hu Q, et al. Tumour exosomes from cells harbouring PTPRZ1-MET fusion contribute to a malignant phenotype and temozolomide chemoresistance in glioblastoma. Oncogene 2017;36:5369-81.

2. Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, et al. Glioblastoma cancer stem cell biology: potential theranostic targets. Drug Resist Updat 2019;42:35-45.

3. Beischlag TV, Anderson G, Mazzoccoli G. Glioma: tryptophan catabolite and melatoninergic pathways link microRNA, 14-3-3, chromosome 4q35, epigenetic processes and other glioma biochemical changes. Curr Pharm Des 2016;22:1033-48.

4. Anderson G, Reiter RJ. Glioblastoma: role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of mir-451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int J Tryptophan Res 2019;12:1178646919855942.

5. Slat EA, Sponagel J, Marpegan L, Simon T, Kfoury N, et al. Cell-intrinsic, Bmal1-dependent circadian regulation of temozolomide sensitivity in glioblastoma. J Biol Rhythms 2017;32:121-9.

6. Abou-Antoun TJ, Hale JS, Lathia JD, Dombrowski SM. Brain cancer stem cells in adults and children: cell biology and therapeutic implications. Neurotherapeutics 2017;14:372-84.

7. Anderson G, Maes M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: assessment, treatment and classification implications. Curr Top Med Chem 2020;20:524-39.

8. Anderson G. Daytime orexin and night-time melatonin regulation of mitochondria melatonin: roles in circadian oscillations systemically and centrally in breast cancer symptomatology. Melatonin Res 2019;2:1-8.

9. Zhao K, Wang L, Li T, Zhu M, Zhang C, et al. The role of miR-451 in the switching between proliferation and migration in malignant glioma cells: AMPK signaling, mTOR modulation and Rac1 activation required. Int J Oncol 2017;50:1989-99.

10. Jia B, Liu W, Gu J, Wang J, Lv W, et al. MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting Yin Yang 1. Exp Cell Res 2019;375:73-81.

11. Li GF, Cheng YY, Li BJ, Zhang C, Zhang XX, et al. miR-375 inhibits the proliferation and invasion of glioblastoma by regulating Wnt5a. Neoplasma 2019;66:350-6.

12. Anderson G. The effects of melatonin on signaling pathways and molecules involved in glioma: Melatonin and glioblastoma: pathophysiology and treatment. Fundam Clin Pharmacol 2020;34:189-91.

13. Im CN. Combination treatment with PPARγ ligand and its specific inhibitor GW9662 downregulates BIS and 14-3-3 gamma, inhibiting stem-like properties in glioblastoma cells. Biomed Res Int 2017;2017:5832824.

14. Yang X, Cao W, Zhou J, Zhang W, Zhang X, et al. 14-3-3ζ positive expression is associated with a poor prognosis in patients with glioblastoma. Neurosurgery 2011;68:932-8. discussion 938

15. Lawn S, Krishna N, Pisklakova A, Qu X, Fenstermacher DA, et al. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 2015;290:3814-24.

16. Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, et al. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 2016;7:50349-64.

17. Bostian AC, Maddukuri L, Reed MR, Savenka T, Hartman JH, et al. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells. Chem Res Toxicol 2016;29:101-8.

18. Jin UH, Karki K, Cheng Y, Michelhaugh SK, Mittal S, et al. The aryl hydrocarbon receptor is a tumor suppressor-like gene in glioblastoma. J Biol Chem 2019;294:11342-53.

19. Riess C, Schneider B, Kehnscherper H, Gesche J, Irmscher N, et al. Activation of the kynurenine pathway in human malignancies can be suppressed by the cyclin-dependent kinase inhibitor dinaciclib. Front Immunol 2020;11:55.

20. Reiter RJ, Sharma R, Ma Q, Rosales-Corral S, Acuna-Castroviejo D, et al. Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome aerobic glycolysis, limit tumor growth and reverse insensitivity to chemotherapy. Melatonin Res 2019;2:105-19.

21. Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2018;175:3239-50.

22. Anderson G. Breast cancer: occluded role of mitochondria N-acetylserotonin/melatonin ratio in co-ordinating pathophysiology. Biochem Pharmacol 2019;168:259-68.

23. Chen J, Zhao KN, Vitetta L. Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients 2019;11:E1026.

24. Tung B, Ma D, Wang S, Oyinlade O, Laterra J, et al. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer 2018;18:1025.

25. Nakagawa H, Sasagawa S, Itoh K. Sodium butyrate induces senescence and inhibits the invasiveness of glioblastoma cells. Oncol Lett 2018;15:1495-502.

26. Baglietto L, Giles GG, English DR, Karahalios A, Hopper JL, et al. Alcohol consumption and risk of glioblastoma; evidence from the Melbourne Collaborative Cohort Study. Int J Cancer 2011;128:1929-34.

27. Stärkel P, Leclercq S, de Timary P, Schnabl B. Intestinal dysbiosis and permeability: the yin and yang in alcohol dependence and alcoholic liver disease. Clin Sci (Lond) 2018;132:199-212.

28. Yamawaki Y, Yoshioka N, Nozaki K, Ito H, Oda K, et al. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res 2018;1680:13-38.

29. Catalano M, D’Alessandro G, Trettel F, Limatola C. Role of infiltrating microglia/macrophages in glioma. Adv Exp Med Biol 2020;1202:281-98.

30. Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, et al. Oncogenic gain of function in glioblastoma is linked to mutant p53 amyloid oligomers. iScience 2020;23:100820.

31. Wang ZT, Chen ZJ, Jiang GM, Wu YM, Liu T, et al. Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cell Signal 2016;28:506-15.

32. Albert-Bayo M, Paracuellos I, González-Castro AM, Rodríguez-Urrutia A, Rodríguez-Lagunas MJ, et al. Intestinal mucosal mast cells: key modulators of barrier function and homeostasis. Cells 2019;8:E135.

33. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014;63:1293-9.

34. Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy 2020. epub ahead of print. doi: 10.1111/all.14254

35. Liu S, Stolz DB, Sappington PL, Macias CA, Killeen ME, et al. HMGB1 is secreted by immunostimulated enterocytes and contributes to cytomix-induced hyperpermeability of Caco-2 monolayers. Am J Physiol Cell Physiol 2006;290:C990-9.

36. Li H, Li J, Zhang G, Da Q, Chen L, et al. HMGB1-induced p62 overexpression promotes snail-mediated epithelial-mesenchymal transition in glioblastoma cells via the degradation of GSK-3β. Theranostics 2019;9:1909-22.

37. Han S, Wang C, Qin X, Xia J, Wu A. LPS alters the immuno-phenotype of glioma and glioma stem-like cells and induces in vivo antitumor immunity via TLR4. J Exp Clin Cancer Res 2017;36:83.

38. Pozuelo-Rubio M. Proteomic and biochemical analysis of 14-3-3-binding proteins during C2-ceramide-induced apoptosis. FEBS J 2010;277:3321-42.

39. Jin CJ, Engstler AJ, Sellmann C, Ziegenhardt D, Landmann M, et al. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016:1-12.

40. Mazurek M, Litak J, Kamieniak P, Osuchowska I, Maciejewski R, et al. Micro RNA molecules as modulators of treatment resistance, immune checkpoints controllers and sensitive biomarkers in glioblastoma multiforme. Int J Mol Sci 2020;21:E1507.

41. Wang X, Tian G, Li Z, Zheng L. The crosstalk between miRNA and mammalian circadian clock. Curr Med Chem 2015;22:1582-8.

42. Reszka E, Zienolddiny S. Epigenetic basis of circadian rhythm disruption in cancer. Methods Mol Biol 2018;1856:173-201.

43. Bai J, Chen WB, Zhang XY, Kang XN, Jin LJ, et al. HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J Stem Cells 2020;12:87-99.

44. Conner C, Lager TW, Guldner IH, Wu MZ, Hishida Y, et al. Cell surface GRP78 promotes stemness in normal and neoplastic cells. Sci Rep 2020;10:3474.

45. Si D, Yin F, Peng J, Zhang G. High expression of CD44 predicts a poor prognosis in glioblastomas. Cancer Manag Res 2020;12:769-75.

46. Yang LW, Wu XJ, Liang Y, Ye GQ, Che YC, et al. miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5. Mol Carcinog 2020;59:447-61.

47. Wu W, Yu T, Wu Y, Tian W, Zhang J, et al. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res 2019;38:133.

48. Tang H, Liu Q, Liu X, Ye F, Xie X, et al. Plasma miR-185 as a predictive biomarker for prognosis of malignant glioma. J Cancer Res Ther 2015;11:630-4.

49. Onishi M, Ichikawa T, Kurozumi K, Inoue S, Maruo T, et al. Annexin A2 regulates angiogenesis and invasion phenotypes of malignant glioma. Brain Tumor Pathol 2015;32:184-94.

50. Christensen MV, Høgdall CK, Jochumsen KM, Høgdall EVS. Annexin A2 and cancer: a systematic review. Int J Oncol 2018;52:5-18.

51. Chen C, Ling MY, Lin FH, Xu L, Lv ZM. Melatonin appears to protect against steroidogenic collapse in both mice fed with high-fat diet and H2 O2 -treated TM3 cells. Andrologia 2019;51:e13323.

52. Akbarzadeh M, Movassaghpour AA, Ghanbari H, Kheirandish M, Fathi Maroufi N, et al. The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep 2017;7:17062.

53. Gonçalves Ndo N, Colombo J, Lopes JR, Gelaleti GB, Moschetta MG, et al. Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS One 2016;11:e0150407.

54. Casado J, Iñigo-Chaves A, Jiménez-Ruiz SM, Ríos-Arrabal S, Carazo-Gallego Á, et al. AA-NAT, MT1 and MT2 correlates with cancer stem-like cell markers in colorectal cancer: study of the influence of stage and p53 status of tumors. Int J Mol Sci 2017;18:E1251.

55. Zheng X, Pang B, Gu G, Gao T, Zhang R, et al. Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int J Biol Sci 2017;13:245-53.

56. Sung GJ, Kim SH, Kwak S, Park SH, Song JH, et al. Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J Pineal Res 2019;66:e12556.

57. Chen X, Hao A, Li X, Du Z, Li H, et al. Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J Pineal Res 2016;61:208-17.

58. Martín V, Sanchez-Sanchez AM, Puente-Moncada N, Gomez-Lobo M, Alvarez-Vega MA, et al. Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J Pineal Res 2014;57:308-16.

59. Ogawa D, Ansari K, Nowicki MO, Salińska E, Bronisz A, et al. MicroRNA-451 Inhibits migration of glioblastoma while making it more susceptible to conventional therapy. Noncoding RNA 2019;5:E25.

60. Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, et al. MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochem Biophys Res Commun 2008;376:86-90.

61. Bernard M, Voisin P. Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J Neurochem 2008;105:595-604.

62. Lu ZJ, Liu SY, Yao YQ, Zhou YJ, Zhang S, et al. The effect of miR-7 on behavior and global protein expression in glioma cell lines. Electrophoresis 2011;32:3612-20.

63. Yao GY, Zhu Q, Xia J, Chen FJ, Huang M, et al. Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis 2018;9:1033.

64. Lee YS, Lee JK, Bae Y, Lee BS, Kim E, et al. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells. Sci Rep 2016;6:26413.

65. Hashemi M, Zali A, Hashemi J, Oraee-Yazdani S, Akbari A. Down-regulation of 14-3-3 zeta sensitizes human glioblastoma cells to apoptosis induction. Apoptosis 2018;23:616-25.

66. Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The two sides of YY1 in cancer: a friend and a foe. Front Oncol 2019;9:1230.

67. Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci U S A 2014;111:10299-304.

68. Jiang W, Zhao S, Shen J, Guo L, Sun Y, et al. The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis 2018;9:149.

69. Li J, Song J, Guo F. miR-186 reverses cisplatin resistance and inhibits the formation of the glioblastoma-initiating cell phenotype by degrading Yin Yang 1 in glioblastoma. Int J Mol Med 2019;43:517-24.

70. Perekatt AO, Valdez MJ, Davila M, Hoffman A, Bonder EM, et al. YY1 is indispensable for Lgr5+ intestinal stem cell renewal. Proc Natl Acad Sci U S A 2014;111:7695-700.

71. Ji K, Zheng J, Lv J, Xu J, Ji X, et al. Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1α pathway. Free Radic Biol Med 2015;84:161-70.

72. de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 2010;12:233-42.

73. Nandi S, Liang G, Sindhava V, Angireddy R, Basu A, et al. YY1 control of mitochondrial-related genes does not account for regulation of immunoglobulin class switch recombination in mice. Eur J Immunol 2020. epub ahead of print. doi: 10.1002/eji.201948385

74. Park A, Lee J, Mun S, Kim DJ, Cha BH, et al. Identification of transcription factor YY1 as a regulator of a prostate cancer-specific pathway using proteomic analysis. J Cancer 2017;8:2303-11.

75. de Assis LVM, Kinker GS, Moraes MN, Markus RP, Fernandes PA, et al. Expression of the circadian clock gene bmal1 positively correlates with antitumor immunity and patient survival in metastatic melanoma. Front Oncol 2018;8:185.

76. Takenaka MC, Gabriely G, Rothhammer V, Mascanfroni ID, Wheeler MA, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci 2019;22:729-40.

77. Muxel SM, Pires-Lapa MA, Monteiro AW, Cecon E, Tamura EK, et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 2012;7:e52010.

78. Pires-Afonso Y, Niclou SP, Michelucci A. Revealing and Harnessing Tumour-Associated Microglia/Macrophage Heterogeneity in Glioblastoma. Int J Mol Sci 2020;21:E689.

79. Leite DM, Zvar Baskovic B, Civita P, Neto C, Gumbleton M, et al. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics. FASEB J 2020;34:1710-27.

80. Buonfiglioli A, Efe IE, Guneykaya D, Ivanov A, Huang Y, et al. let-7 MicroRNAs regulate microglial function and suppress glioma growth through toll-like receptor 7. Cell Rep 2019;29:3460-71.e7.

81. Huang M, Zhang D, Wu JY, Xing K, Yeo E, et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci Transl Med 2020;12:eaay7522.

82. Luchetti F, Canonico B, Bartolini D, Arcangeletti M, Ciffolilli S, et al. Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res 2014;56:382-97.

83. Yuan Y, Ye HQ, Ren QC. Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int J Oncol 2018;52:461-72.

84. Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, Afzaljavan F, Rivandi M, et al. Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem 2017;118:2502-15.

85. Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 2018;560:243-7.

86. Brandao M, Simon T, Critchley G, Giamas G. Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 2019;67:779-90.

87. Henrik Heiland D, Ravi VM, Behringer SP, Frenking JH, Wurm J, et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 2019;10:2541.

88. Kast RE, Hill QA, Wion D, Mellstedt H, Focosi D, et al. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol 2017;39:1010428317699797.

89. Nehser M, Dark J, Schweitzer D, Campbell M, Zwicker J, et al. System Xc- antiporter inhibitors: azo-linked amino-naphthyl-sulfonate analogues of sulfasalazine. Neurochem Res 2019. epub ahead of print. doi: 10.1007/s11064-019-02901-6

90. Mega A, Hartmark Nilsen M, Leiss LW, Tobin NP, Miletic H, et al. Astrocytes enhance glioblastoma growth. Glia 2020;68:316-27.

91. Anderson G, Maes M. Local melatonin regulates inflammation resolution: a common factor in neurodegenerative, psychiatric and systemic inflammatory disorders. CNS Neurol Disord Drug Targets 2014;13:817-27.

92. Hara S, Nakashima S, Kiyono T, Sawada M, Yoshimura S, et al. p53-Independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death Differ 2004;11:853-61.

93. Doan NB, Nguyen HS, Al-Gizawiy MM, Mueller WM, Sabbadini RA, et al. Acid ceramidase confers radioresistance to glioblastoma cells. Oncol Rep 2017;38:1932-40.

94. Doan NB, Alhajala H, Al-Gizawiy MM, Mueller WM, Rand SD, et al. Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency. Oncotarget 2017;8:112662-74.

95. White-Gilbertson S, Lu P, Jones CM, Chiodini S, Hurley D, et al. Tamoxifen is a candidate first-in-class inhibitor of acid ceramidase that reduces amitotic division in polyploid giant cancer cells-Unrecognized players in tumorigenesis. Cancer Med 2020. epub ahead of print. doi: 10.1002/cam4.2960

96. Qu C, Ma J, Zhang Y, Han C, Huang L, et al. Estrogen receptor variant ER-α36 promotes tamoxifen agonist activity in glioblastoma cells. Cancer Sci 2019;110:221-34.

97. Wan S, Jiang J, Zheng C, Wang N, Zhai X, et al. Estrogen nuclear receptors affect cell migration by altering sublocalization of AQP2 in glioma cell lines. Cell Death Discov 2018;4:49.

98. Pinacho-Garcia LM, Valdez RA, Navarrete A, Cabeza M, Segovia J, et al. The effect of finasteride and dutasteride on the synthesis of neurosteroids by glioblastoma cells. Steroids 2020;155:108556.

99. Dubrovska A, Hartung A, Bouchez LC, Walker JR, Reddy VA, et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer 2012;107:43-52.

100. van Schaik RH, Kok M, Sweep FC, van Vliet M, van Fessem M, et al. The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 2011;12:1137-46.

101. He W, Liu R, Yang SH, Yuan F. Chemotherapeutic effect of tamoxifen on temozolomide-resistant gliomas. Anticancer Drugs 2015;26:293-300.

102. Anderson G, Maes M. Interactions of tryptophan and its catabolites with melatonin and the alpha 7 nicotinic receptor in central nervous system and psychiatric disorders: role of the aryl hydrocarbon receptor and direct mitochondria regulation. Int J Tryptophan Res 2017;10:1178646917691738.

103. Mahajan-Thakur S, Bien-Möller S, Marx S, Schroeder H, Rauch BH. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-a systematic review. Int J Mol Sci 2017;18:E2448.

104. Quint K, Stiel N, Neureiter D, Schlicker HU, Nimsky C, et al. The role of sphingosine kinase isoforms and receptors S1P1, S1P2, S1P3, and S1P5 in primary, secondary, and recurrent glioblastomas. Tumour Biol 2014;35:8979-89.

105. Anderson G, Maes M. Reconceptualizing adult neurogenesis: role for sphingosine-1-phosphate and fibroblast growth factor-1 in co-ordinating astrocyte-neuronal precursor interactions. CNS Neurol Disord Drug Targets 2014;13:126-36.

106. Pirmoradi L, Seyfizadeh N, Ghavami S, Zeki AA, Shojaei S. Targeting cholesterol metabolism in glioblastoma: a new therapeutic approach in cancer therapy. J Investig Med 2019;67:715-9.

107. Romani R, Manni G, Donati C, Pirisinu I, Bernacchioni C, et al. S1P promotes migration, differentiation and immune regulatory activity in amniotic-fluid-derived stem cells. Eur J Pharmacol 2018;833:173-82.

108. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 2017;546:158-61.

109. Niba ET, Nagaya H, Kanno T, Tsuchiya A, Gotoh A, et al. Crosstalk between PI3 kinase/PDK1/Akt/Rac1 and Ras/Raf/MEK/ERK pathways downstream PDGF receptor. Cell Physiol Biochem 2013;31:905-13.

110. Al-Koussa H, Atat OE, Jaafar L, Tashjian H, El-Sibai M. The role of Rho GTPases in motility and invasion of glioblastoma cells. Anal Cell Pathol (Amst) 2020;2020:9274016.

111. Wang YC, Tsai CF, Chuang HL, Chang YC, Chen HS, et al. Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling. Oncotarget 2016;7:29563-76.

112. Wang HC, Wong TH, Wang LT, Su HH, Yu HY, et al. Aryl hydrocarbon receptor signaling promotes ORMDL3-dependent generation of sphingosine-1-phosphate by inhibiting sphingosine-1-phosphate lyase. Cell Mol Immunol 2019;16:783-90.

113. Fugio LB, Coeli-Lacchini FB, Leopoldino AM. Sphingolipids and mitochondrial dynamic. Cells 2020;9:E581.

114. Wu W, Wu Y, Mayer K, von Rosenstiel C, Schecker J, et al. Lipid peroxidation plays an important role in chemotherapeutic effects of temozolomide and the development of therapy resistance in human glioblastoma. Transl Oncol 2020;13:100748.

115. Wang W, He S, Zhang R, Peng J, Guo D, et al. ALDH1A1 maintains the cancer stem-like cells properties of esophageal squamous cell carcinoma by activating the AKT signal pathway and interacting with β-catenin. Biomed Pharmacother 2020;125:109940.

116. Gui S, Xie X, O’Neill WQ, Chatfield-Reed K, Yu JG, et al. p53 functional states are associated with distinct aldehyde dehydrogenase transcriptomic signatures. Sci Rep 2020;10:1097.

117. Chen Z, Wang HW, Wang S, Fan L, Feng S, et al. USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Invest 2019;129:2043-55.

118. Cheng P, Wang J, Waghmare I, Sartini S, Coviello V, et al. FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells. Cancer Res 2016;76:7219-30.

119. Wu W, Schecker J, Würstle S, Schneider F, Schönfelder M, et al. Aldehyde dehydrogenase 1A3 (ALDH1A3) is regulated by autophagy in human glioblastoma cells. Cancer Lett 2018;417:112-23.

120. Suwala AK, Koch K, Rios DH, Aretz P, Uhlmann C, et al. Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro. Oncotarget 2018;9:22703-16.

121. Sullivan KE, Rojas K, Cerione RA, Nakano I, Wilson KF. The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells. Oncotarget 2017;8:22325-43.

122. Kawakami R, Mashima T, Kawata N, Kumagai K, Migita T, et al. ALDH1A3-mTOR axis as a therapeutic target for anticancer drug-tolerant persister cells in gastric cancer. Cancer Sci 2020;111:962-73.

123. Park J, Shim JK, Kang JH, Choi J, Chang JH, et al. Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres. Neuro Oncol 2018;20:954-65.

124. Yamazaki H, Nishiguchi K, Miyamoto R, Nakanishi S. Circadian rhythms in the activities of brain and liver aldehyde dehydrogenase isozymes in mice. Life Sci 1986;38:515-20.

125. Matsunaga N, Ogino T, Hara Y, Tanaka T, Koyanagi S, et al. Optimized dosing schedule based on circadian dynamics of mouse breast cancer stem cells improves the antitumor effects of aldehyde dehydrogenase inhibitor. Cancer Res 2018;78:3698-708.

126. Li A, Lin X, Tan X, Yin B, Han W, et al. Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124. FEBS Lett 2013;587:2455-60.

127. Dong Z, Zhang G, Qu M, Gimple RC, Wu Q, et al. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov 2019;9:1556-73.

128. Beker MC, Caglayan B, Caglayan AB, Kelestemur T, Yalcin E, et al. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019;9:19082.

129. Wang Y, Lv D, Liu W, Li S, Chen J, et al. Disruption of the circadian clock alters antioxidative defense via the SIRT1-BMAL1 pathway in 6-OHDA-induced models of Parkinson’s disease. Oxid Med Cell Longev 2018;2018:4854732.

130. Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol 2016;18:160-72.

131. Kuramoto K, Yamamoto M, Suzuki S, Sanomachi T, Togashi K, et al. Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells. FEBS J 2019. epub ahead of print. doi: 10.1111/febs.15187

132. Yoo DY, Nam SM, Kim W, Lee CH, Won MH, et al. N-acetylserotonin increases cell proliferation and differentiating neuroblasts with tertiary dendrites through upregulation of brain-derived neurotrophic factor in the mouse dentate gyrus. J Vet Med Sci 2011;73:1411-6.

133. Huo X, Wang C, Yu Z, Peng Y, Wang S, et al. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res 2017;62.

134. Seo SB, Lee JJ, Yun HH, Im CN, Kim YS, et al. 14-3-3β depletion drives a senescence program in glioblastoma cells through the ERK/SKP2/p27 pathway. Mol Neurobiol 2018;55:1259-70.

135. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 2013;54:127-38.

136. Zhang W, Sun Y, Liu L, Li Z. Prognostic significance of TNFR-associated factor 1 and 2 (TRAF1 and TRAF2) in glioblastoma. Med Sci Monit 2017;23:4506-12.

137. Chen S, Yang J, Yang L, Zhang Y, Zhou L, et al. Ubiquitin ligase TRAF2 attenuates the transcriptional activity of the core clock protein BMAL1 and affects the maximal Per1 mRNA level of the circadian clock in cells. FEBS J 2018;285:2987-3001.

138. Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, et al. Aryl hydrocarbon receptor deficiency alters circadian and metabolic rhythmicity. J Biol Rhythms 2017;32:109-20.

139. Ye X, Yu L, Zuo D, Zhang L, Zu J, et al. Activated mGluR5 protects BV2 cells against OGD/R induced cytotoxicity by modulating BDNF-TrkB pathway. Neurosci Lett 2017;654:70-9.

140. Zapletal O, Tylichová Z, Neča J, Kohoutek J, Machala M, et al. Butyrate alters expression of cytochrome P450 1A1 and metabolism of benzo[a]pyrene via its histone deacetylase activity in colon epithelial cell models. Arch Toxicol 2017;91:2135-50.

141. Costanza M, Finocchiaro G. Allergic signs in glioma pathology: current knowledge and future perspectives. Cancers (Basel) 2019;11:E404.

142. Attarha S, Roy A, Westermark B, Tchougounova E. Mast cells modulate proliferation, migration and stemness of glioma cells through downregulation of GSK3β expression and inhibition of STAT3 activation. Cell Signal 2017;37:81-92.

143. Maldonado MD, Mora-Santos M, Naji L, Carrascosa-Salmoral MP, Naranjo MC, et al. Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacol Res 2010;62:282-7.

144. Piao L, Feng Y, Yang Z, Qi W, Li H, et al. LETM1 is a potential cancer stem-like cell marker and predicts poor prognosis in colorectal adenocarcinoma. Pathol Res Pract 2019;215:152437.

145. Lupo D, Vollmer C, Deckers M, Mick DU, Tews I, et al. Mdm38 is a 14-3-3-like receptor and associates with the protein synthesis machinery at the inner mitochondrial membrane. Traffic 2011;12:1457-66.

146. Agnihotri S, Golbourn B, Huang X, Remke M, Younger S, et al. PINK1 is a negative regulator of growth and the warburg effect in glioblastoma. Cancer Res 2016;76:4708-19.

147. Li X, Spelat R, Bartolini A, Cesselli D, Ius T, et al. Mechanisms of malignancy in glioblastoma cells are linked to MCU upregulation and higher intracellular calcium level. J Cell Sci 2020;133:jcs237503.

148. Dionigi L, Ragonese F, Monarca L, Covino S, de Luca A, et al. Focus on the use of resveratrol as adjuvant in glioblastoma therapy. Curr Pharm Des 2020. epub ahead of print. doi: 10.2174/1381612826666200401085634

149. Lai SW, Liu YS, Lu DY, Tsai CF. Melatonin modulates the microenvironment of glioblastoma multiforme by targeting sirtuin 1. Nutrients 2019;11:E1343.

150. Moretti E, Favero G, Rodella LF, Rezzani R. Melatonin’s antineoplastic potential against glioblastoma. Cells 2020;9:E599.

151. Beccaria K, Canney M, Bouchoux G, Desseaux C, Grill J, et al. Ultrasound-induced blood-brain barrier disruption for the treatment of gliomas and other primary CNS tumors. Cancer Lett 2020;479:13-22.

152. Han YS, Lee JH, Lee SH. Melatonin suppresses ischemia-induced fibrosis by regulating miR-149. Biochem Biophys Res Commun 2020;525:354-9.

153. Ghasemi A, Fallah S, Ansari M. MicroRNA-149 is epigenetically silenced tumor-suppressive microRNA, involved in cell proliferation and downregulation of AKT1 and cyclin D1 in human glioblastoma multiforme. Biochem Cell Biol 2016;94:569-76.

154. She X, Yu Z, Cui Y, Lei Q, Wang Z, et al. miR-128 and miR-149 enhance the chemosensitivity of temozolomide by Rap1B-mediated cytoskeletal remodeling in glioblastoma. Oncol Rep 2014;32:957-64.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/