REFERENCES

1. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 2014;14:173-86.

2. Roskoski R Jr, Sadeghi-Nejad A. Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers. Pharmacol Res 2018;128:1-17.

3. Li J, Shang G, Chen YJ, Brautigam CA, Liou J, et al. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. Elife 2019;8.

4. Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018;15:151-67.

5. Krampitz GW, Norton JA. RET gene mutations (genotype and phenotype) of multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma. Cancer 2014;120:1920-31.

6. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381-3.

7. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990;60:557-63.

8. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012;22:436-45.

9. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375-7.

10. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382-4.

11. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012;18:378-81.

12. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:pl1.

13. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, et al. RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients. Clin Cancer Res 2017;23:1988-97.

14. Rich TA, Reckamp KL, Chae YK, Doebele RC, Iams WT, et al. Analysis of cell-free DNA from 32,989 advanced cancers reveals novel co-occurring activating RET alterations and oncogenic signaling pathway aberrations. Clin Cancer Res 2019;25:5832-42.

15. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol 2016;17:1653-60.

16. Lee SH, Lee JK, Ahn MJ, Kim DW, Sun JM, et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann Oncol 2017;28:292-7.

17. Yoh K, Seto T, Satouchi M, Nishio M, Yamamoto N, et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir Med 2017;5:42-50.

18. Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, et al. Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. Cancer Discov 2018;8:836-49.

19. Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol 2018;29:1869-76.

20. Gainor JF, Lee DH, Curijgliano G, Doebele RC, Kim CSB, et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). ASCO Annual Meeting 2019. Abstract 9008

21. Drilon A, Oxnard GR, Wirth L, Besse B, Gautschi O, et al. PL02.08: registrational results of LIBRETTO-001: a Phase 1/2 Trial of LOXO-292 in patients with RET fusion-positive lung cancers. J Thorac Oncol 2019;14:S6-S7.

22. Solomon BJ, Tan L, Lin JJ, Wong SQ, Hollizeck S, et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J Thorac Oncol 2020;15:541-9.

23. Wells SA Jr, Pacini F, Robinson BG, Santoro M. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J Clin Endocrinol Metab 2013;98:3149-64.

24. Plaza-Menacho I, Barnouin K, Goodman K, Martinez-Torres RJ, Borg A, et al. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell 2014;53:738-51.

25. Goodman KM, Kjaer S, Beuron F, Knowles PP, Nawrotek A, et al. RET recognition of GDNF-GFRalpha1 ligand by a composite binding site promotes membrane-proximal self-association. Cell Rep 2014;8:1894-904.

26. Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 1995;15:1613-9.

27. Terzyan SS, Shen T, Liu X, Huang Q, Teng P, et al. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J Biol Chem 2019;294:10428-37.

28. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2:401-4.

29. Levinson S, Cagan RL. Drosophila cancer models identify functional differences between ret fusions. Cell Rep 2016;16:3052-61.

30. Das TK, Cagan RL. KIF5B-RET oncoprotein signals through a multi-kinase signaling hub. Cell Rep 2017;20:2368-83.

31. Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 2013;18:865-75.

32. Tsuta K, Kohno T, Yoshida A, Shimada Y, Asamura H, et al. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br J Cancer 2014;110:1571-8.

33. Wang R, Hu H, Pan Y, Li Y, Ye T, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012;30:4352-9.

34. Mizukami T, Shiraishi K, Shimada Y, Ogiwara H, Tsuta K, et al. Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma. J Thorac Oncol 2014;9:622-30.

35. Paratala BS, Chung JH, Williams CB, Yilmazel B, Petrosky W, et al. RET rearrangements are actionable alterations in breast cancer. Nat Commun 2018;9:4821.

36. Nigro CL, Rusmini M, Ceccherini I. RET in breast cancer: pathogenic implications and mechanisms of drug resistance. Cancer Drug Resist 2019;2:1136-52.

37. Drilon A, Wang L, Hasanovic A, Suehara Y, Lipson D, et al. Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 2013;3:630-5.

38. Gautschi O, Milia J, Filleron T, Wolf J, Carbone DP, et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J Clin Oncol 2017;35:1403-10.

39. Hida T, Velcheti V, Reckamp KL, Nokihara H, Sachdev P, et al. A phase 2 study of lenvatinib in patients with RET fusion-positive lung adenocarcinoma. Lung Cancer 2019;138:124-30.

40. Drilon A, Lin JJ, Filleron T, Ni A, Milia J, et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J Thorac Oncol 2018;13:1595-601.

41. James J, Ruggeri B, Armstrong RC, Rowbottom MW, Jones-Bolin S, et al. CEP-32496: a novel orally active BRAF(V600E) inhibitor with selective cellular and in vivo antitumor activity. Mol Cancer Ther 2012;11:930-41.

42. Li GG, Somwar R, Joseph J, Smith RS, Hayashi T, et al. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin Cancer Res 2017;23:2981-90.

43. Drilon A, Fu S, Patel MR, Fakih M, Wang D, et al. A phase I/Ib trial of the VEGFR-sparing multikinase RET inhibitor RXDX-105. Cancer Discov 2019;9:384-95.

44. Brandhuber BJ, Haas J, Tuch B, Ebata K, Bouhana K, et al. The development of a potent, KDR/VEGFR2-sparing RET kinase inhibitor for treating patients with RET-dependent cancers. Eur J Cancer 2016;69:S144.

45. Taylor MH, Gainor JF, Hu MI, Zhu VW, Lopes G, et al. Activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients with advanced RET-altered thyroid cancers. J Clin Oncol 2019;37. Abstract 6018

46. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117-25.

47. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002;16:2190-6.

48. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876-80.

49. Riely GJ, Yu HA. EGFR: The paradigm of an oncogene-driven lung cancer. Clin Cancer Res 2015;21:2221-6.

50. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 2012;4:120ra17.

51. Katayama R, Lovly CM, Shaw AT. Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin Cancer Res 2015;21:2227-35.

52. Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol 2013;31:3987-96.

53. Awad MM, Katayama R, McTigue M, Liu W, Deng YL, et al. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 2013;368:2395-401.

54. Carlomagno F, Guida T, Anaganti S, Vecchio G, Fusco A, et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene 2004;23:6056-63.

55. Carlomagno F, Guida T, Anaganti S, Provitera L, Kjaer S, et al. Identification of tyrosine 806 as a molecular determinant of RET kinase sensitivity to ZD6474. Endocr Relat Cancer 2009;16:233-41.

56. Huang Q, Schneeberger VE, Luetteke N, Jin C, Afzal R, et al. Preclinical Modeling of KIF5B-RET Fusion Lung Adenocarcinoma. Mol Cancer Ther 2016;15:2521-9.

57. Liu X, Shen T, Mooers BHM, Hilberg F, Wu J. Drug resistance profiles of mutations in the RET kinase domain. Br J Pharmacol 2018;175:3504-15.

58. Nakaoku T, Kohno T, Araki M, Niho S, Chauhan R, et al. A secondary RET mutation in the activation loop conferring resistance to vandetanib. Nat Commun 2018;9:625.

59. Dagogo-Jack I, Stevens SE, Lin JJ, Nagy R, Ferris L, et al. Emergence of a RET V804M Gatekeeper mutation during treatment with Vandetanib in RET-rearranged NSCLC. J Thorac Oncol 2018;13:e226-e7.

60. Andrews SW, Aronow S, Blake JF, Brandhuber BJ, Cook A, et al. Substituted pyrazol[1,5-A]pyridine compounds as RET kinase inhibitors. WO2018/071447 A1 2017.

61. Ou SI, Cui J, Schrock AB, Goldberg ME, Zhu VW, et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer 2017;108:228-31.

62. Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin Cancer Res 2018;24:3097-107.

63. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 2016;6:1118-33.

64. Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, et al. The potent ALK inhibitor Brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin Cancer Res 2016;22:5527-38.

65. Gainor JF, Tseng D, Yoda S, Dagogo-Jack I, Friboulet L, et al. Patterns of metastatic spread and mechanisms of resistance to Crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis Oncol 2017;2017.

66. Fuse MJ, Okada K, Oh-Hara T, Ogura H, Fujita N, et al. Mechanisms of resistance to NTRK inhibitors and therapeutic strategies in NTRK1-rearranged cancers. Mol Cancer Ther 2017;16:2130-43.

67. Shen T, Terzyan SS, Liu X, Mooers BHM, Wu J. Structural insight into sensitivity and resistance of RET mutants to selpercatinib (LOXO-292). Sixth AACR-IASLC International Joint Conference:. Lung Cancer Translational Science from the Bench to the Clinic 2020;Abstract:B18.

68. Kohno T, Tabata J, Nakaoku T. REToma: a cancer subtype with a shared driver oncogene. Carcinogenesis 2019. Epub ahead of print. doi: 10.1093/carcin/bgz184

69. Drilon A, Ou SI, Cho BC, Kim DW, Lee J, et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent- front mutations. Cancer Discov 2018;8:1227-36.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/