REFERENCES

1. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014;740:364-78.

2. Garutti M, Pelizzari G, Bartoletti M, Malfatti MC, Gerratana L, et al. Platinum salts in patients with breast cancer: a focus on predictive factors. Int J Mol Sci 2019;20.

3. Farha NG, Kasi A. Docetaxel. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.

4. Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review. Clin Pharmacokinet 2018;57:7-19.

5. Johnson-Arbor K, Dubey R. Doxorubicin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.

6. Khasraw M, Bell R, Dang C. Epirubicin: is it like doxorubicin in breast cancer? A clinical review. Breast 2012;21:142-9.

7. Li J, Wang Z, Shao Z. Fulvestrant in the treatment of hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: a review. Cancer Med 2019;8:1943-57.

8. Zhao D, Chen J, Chu M, Wang J. Prolonged low-dose infusion for gemcitabine: a systematic review. Onco Targets Ther 2019;12:4859-68.

9. Voigtlaender M, Schneider-Merck T, Trepel M. Lapatinib. Recent Results Cancer Res 2018;211:19-44.

10. Roshan MH, Shing YK, Pace NP. Metformin as an adjuvant in breast cancer treatment. SAGE Open Med 2019;7:2050312119865114.

11. Bochum S, Berger S, Martens UM. Olaparib. Recent Results Cancer Res 2018;211:217-33.

12. Farrar MC, Jacobs TF. Tamoxifen. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.

13. Mazzotta M, Krasniqi E, Barchiesi G, Pizzuti L, Tomao F, et al. Long-term safety and real-world effectiveness of trastuzumab in breast cancer. J Clin Med 2019;8.

14. Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med 2013;4:1231-5.

15. Zijlstra A, Di Vizio D. Size matters in nanoscale communication. Nat Cell Biol 2018;20:228-30.

16. Yu X, Odenthal M, Fries JW. Exosomes as miRNA carriers: formation-function-future. Int J Mol Sci 2016;17.

17. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm (Vienna) 2010;117:1-4.

18. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014;24:766-9.

19. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 2017;114:E9066-75.

20. Kalluri R, LeBleu VS. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol 2016;81:275-80.

21. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013;14:319.

22. Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009;21:575-81.

23. Cai J, Han Y, Ren HM, Chen CY, He DF, et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol 2013;5:227-38.

24. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell 2016;61:667-76.

25. Wang J, Liu X, Qiu Y, Shi Y, Cai J, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol 2018;11:11.

26. Schwarzenbach H, Gahan PB. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA 2019;5.

27. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA 2017;8.

28. Malumbres M, Hunt SL, Sotillo R, Martin J, Odajima J, et al. Driving the cell cycle to cancer. Adv Exp Med Biol 2003;532:1-11.

29. Serra F, Lapidari P, Quaquarini E, Tagliaferri B, Sottotetti F, et al. Palbociclib in metastatic breast cancer: current evidence and real-life data. Drugs Context 2019;8:212579.

30. Del Re M, Bertolini I, Crucitta S, Fontanelli L, Rofi E, et al. Overexpression of TK1 and CDK9 in plasma-derived exosomes is associated with clinical resistance to CDK4/6 inhibitors in metastatic breast cancer patients. Breast Cancer Res Treat 2019;178:57-62.

31. Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014;159:499-513.

32. Zeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, et al. Significance and role of pattern recognition receptors in malignancy. Arch Immunol Ther Exp (Warsz) 2019;67:133-41.

33. Zhang Y, Liu Z. STAT1 in cancer: friend or foe? Discov Med 2017;24:19-29.

34. Brzozowa-Zasada M, Piecuch A, Michalski M, Segiet O, Kurek J, et al. Notch and its oncogenic activity in human malignancies. Eur Surg 2017;49:199-209.

35. Wang X, Xu C, Hua Y, Sun L, Cheng K, et al. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer. J Exp Clin Cancer Res 2016;35:186.

36. Panno ML, Giordano F. Effects of psoralens as anti-tumoral agents in breast cancer cells. World J Clin Oncol 2014;5:348-58.

37. Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018;59:1325-40.

38. Chen WX, Xu LY, Qian Q, He X, Peng WT, et al. Analysis of miRNA signature differentially expressed in exosomes from adriamycin-resistant and parental human breast cancer cells. Biosci Rep 2018;38.

39. O’Brien K, Lowry MC, Corcoran C, Martinez VG, Daly M, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget 2015;6:32774-89.

40. Santos JC, Lima NDS, Sarian LO, Matheu A, Ribeiro ML, et al. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018;8:829.

41. Stevic I, Muller V, Weber K, Fasching PA, Karn T, et al. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med 2018;16:179.

42. Chen WX, Cai YQ, Lv MM, Chen L, Zhong SL, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol 2014;35:9649-59.

43. Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PloS One 2014;9:e95240.

44. Wei Y, Lai X, Yu S, Chen S, Ma Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat 2014;147:423-31.

45. Yu DD, Wu Y, Zhang XH, Lv MM, Chen WX, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol 2016;37:3227-35.

46. Wang B, Zhang Y, Ye M, Wu J, Ma L, et al. Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Curr Drug Metab 2019;20:804-14.

47. Bovy N, Blomme B, Freres P, Dederen S, Nivelles O, et al. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 2015;6:10253-66.

48. Zhong SL, Chen X, Wang DD, Zhang XH, Shen HY, et al. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget 2016;7:19601-9.

49. Li Y, Liang Y, Sang Y, Song X, Zhang H, et al. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis 2018;9:14.

50. Li XJ, Ren ZJ, Tang JH, Yu Q. Exosomal microRNA MiR-1246 promotes cell proliferation, invasion and drug resistance by targeting CCNG2 in breast cancer. Cell Physiol Biochem 2017;44:1741-8.

51. Shen M, Dong C, Ruan X, Yan W, Cao M, et al. Chemotherapy-induced extracellular vesicle miRNAs promote breast cancer stemness by targeting ONECUT2. Cancer Res 2019;79:3608-21.

52. Chen WX, Xu LY, Qian Q, He X, Peng WT, et al. D Rhamnose β-hederin reverses chemoresistance of breast cancer cells by regulating exosome-mediated resistance transmission. Biosci Rep 2018;38.

53. Ozawa PMM, Alkhilaiwi F, Cavalli IJ, Malheiros D, de Souza Fonseca Ribeiro EM, et al. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res Treat 2018;172:713-23.

54. Dillon RL, White DE, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 2007;26:1338-45.

55. Giltnane JM, Balko JM. Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov Med 2014;17:275-83.

56. Milani M, Harris AL. Targeting tumour hypoxia in breast cancer. Eur J Cancer 2008;44:2766-73.

57. Pak SH, Joung YH, Park JH, Lim EJ, Darvin P, et al. Hypoxia upregulates Hsp90alpha expression via STAT5b in cancer cells. Int J Oncol 2012;41:161-8.

58. Rodríguez-Martínez A, de Miguel-Pérez D, Ortega FG, García-Puche JL, Robles-Fernández I, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res 2019;21:21.

59. Muller V, Gade S, Steinbach B, Loibl S, von Minckwitz G, et al. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat 2014;147:61-8.

60. Liu F, Kong X, Lv L, Gao J. TGF-beta1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes. Cancer Lett 2015;359:288-98.

61. Li X, Liu X, Xu W, Zhou P, Gao P, et al. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem 2013;288:18121-33.

62. Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene 2013;531:8-14.

63. Hu Q, Chen WX, Zhong SL, Zhang JY, Ma TF, et al. MicroRNA-452 contributes to the docetaxel resistance of breast cancer cells. Tumour Biol 2014;35:6327-34.

64. Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, et al. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: a double-edged sword protein. DNA Repair (Amst) 2018;69:63-72.

65. Sherr CJ. D-type cyclins. Trends Biochem Sci 1995;20:187-90.

66. Rana S, Maples PB, Senzer N, Nemunaitis J. Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 2008;8:1461-70.

67. Ahmed S, Al-Saigh S, Matthews J. FOXA1 is essential for aryl hydrocarbon receptor-dependent regulation of cyclin G2. Mol Cancer Res 2012;10:636-48.

68. Chen WX, Cheng L, Pan M, Qian Q, Zhu YL, et al. D Rhamnose beta-Hederin against human breast cancer by reducing tumor-derived exosomes. Oncol Lett 2018;16:5172-8.

69. Mao L, Li J, Chen WX, Cai YQ, Yu DD, et al. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs. Tumour Biol 2016;37:5247-56.

70. Braune EB, Seshire A, Lendahl U. Notch and Wnt dysregulation and its relevance for breast cancer and tumor initiation. Biomedicines 2018;6.

71. Tang S, Zheng K, Tang Y, Li Z, Zou T, et al. Overexpression of serum exosomal HOTAIR is correlated with poor survival and poor response to chemotherapy in breast cancer patients. J Biosci 2019;44.

72. Zheng Z, Chen M, Xing P, Yan X, Xie B. Increased expression of exosomal AGAP2-AS1 (AGAP2 Antisense RNA 1) in breast cancer cells inhibits trastuzumab-induced cell cytotoxicity. Med Sci Monit 2019;25:2211-20.

73. Dong H, Wang W, Chen R, Zhang Y, Zou K, et al. Exosome-mediated transfer of lncRNASNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 2018;53:1013-26.

74. Xu CG, Yang MF, Ren YQ, Wu CH, Wang LQ. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 2016;20:4362-8.

75. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009;15:1126-32.

76. Adams JM, Cory S. Modified nucleosides and bizarre 5’-termini in mouse myeloma messenger-rna. P Aust Biochem Soc 1975;8:104.

77. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012;485:201-6.

78. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 2017;169:1187-200.

79. Esteller M, Pandolfi PP. The epitranscriptome of noncoding RNAs in cancer. Cancer Discov 2017;7:359-68.

80. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117-20.

81. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161:1388-99.

82. Chen T, Hao YJ, Zhang Y, Li MM, Wang M, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015;16:289-301.

83. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 2015;347:1002-6.

84. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer 2019;18:103.

85. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology 2017;65:529-43.

86. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 2016;62:335-45.

87. Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 2018;20:1074-83.

88. Cai X, Wang X, Cao C, Gao Y, Zhang S, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 2018;415:11-9.

89. Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013;13:1554-71.

90. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104-7.

91. Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012;227:658-67.

92. Hung Y, Wang YL, Lin YZ, Chiang SF, Wu WR, et al. The exosomal compartment protects epidermal growth factor receptor from small molecule inhibitors. Biochem Biophys Res Commun 2019;510:42-7.

93. Ning K, Wang T, Sun X, Zhang P, Chen Y, et al. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer. J Surg Oncol 2017;115:932-40.

94. Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2017;36:669-82.

95. Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol 2014;35:10773-9.

96. Ma X, Cai Y, He D, Zou C, Zhang P, et al. Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci U S A 2012;109:16282-7.

97. Wang T, Ning K, Lu TX, Sun X, Jin L, et al. Increasing circulating exosomes-carrying TRPC5 predicts chemoresistance in metastatic breast cancer patients. Cancer Sci 2017;108:448-54.

98. Martinez VG, O’Driscoll L. Neuromedin U: a multifunctional neuropeptide with pleiotropic roles. Clin Chem 2015;61:471-82.

99. Rani S, Corcoran C, Shiels L, Germano S, Breslin S, et al. Neuromedin U: a candidate biomarker and therapeutic target to predict and overcome resistance to HER-tyrosine kinase inhibitors. Cancer Res 2014;74:3821-33.

100. Martinez VG, O’Neill S, Salimu J, Breslin S, Clayton A, et al. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology 2017;6:e1362530.

101. Liu G, Chen Y, Qi F, Jia L, Lu XA, et al. Specific chemotherapeutic agents induce metastatic behaviour through stromal- and tumour-derived cytokine and angiogenic factor signalling. J Pathol 2015;237:190-202.

102. Keklikoglou I, Cianciaruso C, Guc E, Squadrito ML, Spring LM, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 2019;21:190-202.

103. Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, et al. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017;11:288-304.

104. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475:222-5.

105. Di Pietro G, Magno LA, Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol 2010;6:153-70.

106. Yang SJ, Wang DD, Li J, Xu HZ, Shen HY, et al. Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 2017;623:5-14.

107. Semina SE, Scherbakov AM, Vnukova AA, Bagrov DV, Evtushenko EG, et al. Exosome-mediated transfer of cancer cell resistance to antiestrogen drugs. Molecules 2018;23.

108. Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin Cancer Biol 2019;59:147-60.

109. Sliva D. Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 2004;4:327-36.

110. Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res 2014;33:62.

111. Kreger BT, Johansen ER, Cerione RA, Antonyak MA. The enrichment of survivin in exosomes from breast cancer cells treated with paclitaxel promotes cell survival and chemoresistance. Cancers (Basel) 2016;8.

112. Rafatmanesh A, Behjati M, Mobasseri N, Sarvizadeh M, Mazoochi T, et al. The survivin molecule as a double-edged sword in cellular physiologic and pathologic conditions and its role as a potential biomarker and therapeutic target in cancer. J Cell Physiol 2020;235:725-44.

113. Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem 2019;459:1-6.

114. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015;219:396-405.

115. Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 2018;177:139-48.

116. Dong R, Ji J, Liu H, He X. The evolving role of trastuzumab emtansine (T-DM1) in HER2-positive breast cancer with brain metastases. Crit Rev Oncol Hematol 2019;143:20-6.

117. Barok M, Puhka M, Vereb G, Szollosi J, Isola J, et al. Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer 2018;18:504.

118. Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, et al. Exosome is a mechanism of intercellular drug transfer: Application of quantitative pharmacology. J Control Release 2017;268:147-58.

119. Tian Y, Li S, Song J, Ji T, Zhu M, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014;35:2383-90.

120. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7.

121. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017;49:e346.

122. Melzer C, Rehn V, Yang Y, Bahre H, von der Ohe J, et al. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel) 2019;11.

123. Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, et al. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol 2018;9:1116.

124. Gomari H, Forouzandeh Moghadam M, Soleimani M, Ghavami M, Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int J Nanomedicine 2019;14:5679-90.

125. Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. Onco Targets Ther 2018;11:5753-62.

126. Wang P, Wang H, Huang Q, Peng C, Yao L, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics 2019;9:1714-27.

127. Meng X, Muller V, Milde-Langosch K, Trillsch F, Pantel K, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget 2016;7:16923-35.

128. Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 2012;10:134.

129. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001;7:297-303.

130. Rashed MH, Bayraktar E, Helal GK, Abd-Ellah MF, Amero P, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 2017;18.

131. Li R, Chibbar R, Xiang J. Novel EXO-T vaccine using polyclonal CD4(+) T cells armed with HER2-specific exosomes for HER2-positive breast cancer. Onco Targets Ther 2018;11:7089-93.

132. Xie Y, Wu J, Xu A, Ahmeqd S, Sami A, et al. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice. Vaccine 2018;36:1414-22.

133. Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of triple negative breast cancer. J Transl Med 2018;16:147.

134. Walker ND, Elias M, Guiro K, Bhatia R, Greco SJ, et al. Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis 2019;10:59.

135. Schwarzenbach H. Methods for quantification and characterization of microRNAs in cell-free plasma/serum, normal exosomes and tumor-derived exosomes. Transl Cancer Res 2018;7 (Suppl 2):253-63.

136. Livshts MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep 2015;5:17319.

137. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013;10:472-84.

138. Perakis S, Speicher MR. Emerging concepts in liquid biopsies. BMC Med 2017;15:75.

139. Mimeault M, Batra SK. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol Biomarkers Prev 2014;23:234-54.

140. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010;12:19-30.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/