REFERENCES
1. Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, et al. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res 2015;56:414-25.
3. Pieterse Z, Amaya Padilla MA, Singomat T, Binju M, Madjid BD, et al. Ovarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol 2019;106:117-26.
4. Berek JS, Crum C, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynecol Obstet 2015;131:S111-22.
5. Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res 2012;31:14.
6. Yu Y, Gaillard S, Phillip Jude M, Huang TC, Pinto Sneha M, et al. Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 2015;28:82-96.
7. Sebastian V, Jermaine IC, Robert CB, Andy B, Jonathan SB, et al. Rethinking ovarian cancer: recommendations for improving outcomes. NatRev Cancer 2011;11:719.
8. Markman M, Rothman R, Hakes T, Reichman B, Hoskins W, et al. Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J Clin Oncol 1991;9:389-93.
9. Luvero D, Milani A, Ledermann JA. Treatment options in recurrent ovarian cancer: latest evidence and clinical potential. Ther Adv Med Oncol 2014;6:229-39.
10. Stuart GCE, Kitchener H, Bacon M, duBois A, Friedlander M, et al. 2010 Gynecologic Cancer InterGroup (GCIG) consensus statement on clinical trials in ovarian cancer: report from the Fourth Ovarian Cancer Consensus Conference. Int J Gynecol Cancer 2011;21:750-5.
11. Rahman M, Azari H, Deleyrolle L, Vedam-Mai V, Reynolds BA, et al. The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 2011;68:531-45. discussion 545
12. Abubaker K, Latifi A, Luwor R, Nazaretian S, Zhu H, et al. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Molecular Cancer 2013;12:24.
13. Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, et al. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 2010;9:3186-99.
14. Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, et al. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 2011;112:2850-64.
15. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab Invest 2006;86:1203-7.
16. Choi YL, Kim SH, Shin YK, Hong YC, Lee SJ, et al. Cytoplasmic CD24 expression in advanced ovarian serous borderline tumors. Gynecol Oncol 2005;97:379-86.
17. Nakamura K, Terai Y, Tanabe A, Ono YJ, Hayashi M, et al. CD24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the Akt and ERK pathways. Oncol Rep 2017;37:3189-200.
18. Meng E, Long B, Sullivan P, McClellan S, Finan MA, et al. CD44+/CD24- ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis 2012;29:939-48.
19. Taddei A, Villanucci A, Amunni G, Baroni G, Taddei GL, et al. c-KIT expression and correlation with chemotherapy resistance in ovarian carcinoma: an immunocytochemical study. Ann Oncol 2004;15:594-7.
20. Abubaker K, Luwor RB, Escalona R, McNally O, Quinn MA, et al. Targeted disruption of the JAK2/STAT3 pathway in combination with systemic administration of paclitaxel inhibits the priming of ovarian cancer stem cells leading to a reduced tumor burden. Front Oncol 2014;4:75.
21. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 2008;28:209.
22. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8.
23. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. The Epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15.
24. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Molecular Cell Biol 2014;15:178-96.
25. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871-90.
26. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009;119:1438-49.
27. Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev 2016;35:645-54.
28. Takai M, Terai Y, Kawaguchi H, Ashihara K, Fujiwara S, et al. The EMT (epithelial-mesenchymal-transition)-related protein expression indicates the metastatic status and prognosis in patients with ovarian cancer. J Ovarian Res 2014;7:76.
29. Davidson B, Holth A, Hellesylt E, Tan TZ, Huang RY, et al. The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. Human Pathology 2015;46:1-8.
30. Zhu X, Shen H, Yin X, Long L, Xie C, et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene 2016;35:323-32.
31. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012;12:91.
32. Chowanadisai W, Messerli SM, Miller DH, Medina JE, Hamilton JW, et al. Cisplatin resistant spheroids model clinically relevant survival mechanisms in ovarian tumors. PLoS One 2016;11:e0151089.
33. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005;5:744-9.
34. Lupia M, Angiolini F, Bertalot G, Freddi S, Sachsenmeier KF, et al. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Reports 2018;10:1412-25.
35. Allard D, Allard B, Gaudreau PO, Chrobak P, Stagg J. CD73-adenosine: a next-generation target in immuno-oncology. Immunotherapy 2016;8:145-63.
37. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 2007;67:8216-22.
38. Marchini S, Fruscio R, Clivio L, Beltrame L, Porcu L, et al. Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer. Eur J Cancer 2013;49:520-30.
39. Pouyafar A, Heydarabad MZ, Abdolalizadeh J, Rahbarghazi R, Talebi M. Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage. Cell Biosci 2019;9:30.
40. Liu A, Yu X, Liu S. Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chinese journal of cancer 2013;32:483-7.
41. Mitra T, Prasad P, Mukherjee P, Chaudhuri SR, Chatterji U, et al. Stemness and chemoresistance are imparted to the OC cells through TGFβ1 driven EMT. J Cell Biochem 2018;119:5775-87.
42. Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010;10:147.
43. Jiang H, Lin X, Liu Y, Gong W, Ma X, et al. Transformation of epithelial ovarian cancer stemlike cells into mesenchymal lineage via EMT results in cellular heterogeneity and supports tumor engraftment. Molecular medicine (Cambridge, Mass) 2012;18:1197-208.
44. Parida S, Chakraborty S, Maji RK, Ghosh Z. Elucidating the gene regulatory networks modulating cancer stem cells and non-stem cancer cells in high grade serous ovarian cancer. Genomics 2019;111:103-13.
45. Liu S, Sun J, Cai B, Xi X, Yang L, et al. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer. Tumor Biology 2016;37:9671-80.
46. Qin S, Li Y, Cao X, Du J, Huang X. NANOG regulates epithelial-mesenchymal transition and chemoresistance in ovarian cancer. Biosci Rep 2017;37:BSR20160247.
47. Akhter MZ, Sharawat SK, Kumar V, Kochat V, Equbal Z, et al. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM(+)CD45(+) phenotype. Oncogene 2018;37:2089-103.
48. Li Y, Chen T, Zhu J, Zhang H, Jiang H, et al. High ALDH activity defines ovarian cancer stem-like cells with enhanced invasiveness and EMT progress which are responsible for tumor invasion. Biochem Biophys Res Commun 2018;495:1081-8.
49. Sun YZ, Ruan JS, Jiang ZS, Wang L, Wang SM. Extracellular vesicles: a new perspective in tumor therapy. BioMed Res Int 2018;2018:2687954.
51. Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 2005;4:1595-604.
52. Crow J, Atay S, Banskota S, Artale B, Schmitt S, et al. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget 2017;8:11917-36.
53. Wang Y, Zhang L, Li Y, Chen L, Wang X, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 2015;192:61-9.
54. Liao TT, Yang MH. Revisiting epithelial-mesenchymal transition in cancer metastasis: the connection between epithelial plasticity and stemness. Mol Oncol 2017;11:792-804.
55. Cha SY, Choi YH, Hwang S, Jeong JY, An HJ. Clinical impact of microRNAs associated with cancer stem cells as a prognostic factor in ovarian carcinoma. J Cancer 2017;8:3538-47.
56. Srivastava AK, Banerjee A, Cui T, Han C, Cai S, et al. Inhibition of miR-328-3p impairs cancer stem cell function and prevents metastasis in ovarian cancer. Cancer Res 2019;79:2314-26.
57. Tung SL, Huang WC, Hsu FC, Yang ZP, Jang TH, et al. miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERK pathway. Oncogenesis 2017;6:e326.