REFERENCES
1. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927;8:519-30.
2. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 1978;22:190-274.
4. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 2015;11:9.
7. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018;20:745-54.
8. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the Heterogeneity. Trends Cancer 2017;3:169-80.
9. Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today 2017;22:796-804.
11. Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: new concepts in an old field. Antioxid Redox Signal 2017;26:462-85.
12. Evans JMM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005;330:1304-5.
13. Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer 2012;118:1202-11.
14. Bodmer M, Becker C, Meier C, Jick SS, Meier CR. Use of metformin and the risk of ovarian cancer: a case-control analysis. Gynecol Oncol 2011;123:200-4.
15. Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 2014;3:e02242.
16. Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-based therapeutic strategies targeting cancer stem cells. Front Pharmacol 2019;10:203.
17. Heeschen C, Sancho P. More challenges ahead-metabolic heterogeneity of pancreatic cancer stem cells. Mol Cell Oncol 2016;3:e1105353.
18. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, et al. MYC/PGC-1alpha balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 2015;22:590-605.
19. Zhou G, Myers R, Li Y, Chen Y, Shen X, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167-74.
20. Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, et al. Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis. PLoS Biol 2015;13:e1002309.
21. Wang Y, Bai C, Ruan Y, Liu M, Chu Q, et al. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun 2019;10:201.
22. Kim JH, Lee KJ, Seo Y, Kwon JH, Yoon JP, et al. Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep 2018;8:409.
23. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013;23:143-58.
24. Márquez J, Alonso FJ, Matés JM, Segura JA, Martín-Rufián M, et al. Glutamine Addiction In Gliomas. Neurochem Res 2017;42:1735-46.
25. Mohamed A, Deng X, Khuri FR, Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer 2014;15:7-15.
26. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009;458:762.
27. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 2014;13:890-901.
28. Qie S, Chu C, Li W, Wang C, Sang N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J Cell Biochem 2014;115:498-509.
29. Erickson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 2010;1:734-40.
30. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013;496:101.
31. Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010;70:8981-7.
32. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest 2015;125:1591-602.
33. Masamha CP, LaFontaine P. Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy. J Cell Biochem 2018;119:6136-45.
34. Wang J-B, Erickson JW, Fuji R, Ramachandran S, Gao P, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 2010;18:207-19.
35. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 2011;108:8674-9.
36. Christa L, Simon MT, Flinois JP, Gebhardt R, Brechot C, et al. Overexpression of glutamine synthetase in human primary liver cancer. Gastroenterology 1994;106:1312-20.
37. Issaq SH, Mendoza A, Fox SD, Helman LJ. Glutamine synthetase is necessary for sarcoma adaptation to glutamine deprivation and tumor growth. Oncogenesis 2019;8:20.
38. Yang L, Achreja A, Yeung TL, Mangala LS, Jiang D, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab 2016;24:685-700.
39. Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 2011;7:e1002229.
40. Kuo CY, Ann DK. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond) 2018;38:47.
41. Mancini R, Noto A, Pisanu ME, Vitis CD, Maugeri-Saccà M, et al. Metabolic features of cancer stem cells: the emerging role of lipid metabolism. Oncogene 2018;37:2367.
42. Yi M, Li J, Chen S, Cai J, Ban Y, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res 2018;37:118.
43. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007;7:763-77.
44. Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, Taja-Chayeb L, Morales-Barcenas R, et al. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018;27:475-89.
45. Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 2010;6:551-62.
46. Papaevangelou E, Almeida GS, Box C, deSouza NM, Chung YL. The effect of FASN inhibition on the growth and metabolism of a cisplatin-resistant ovarian carcinoma model. Int J Cancer 2018;143:992-1002.
47. Zaytseva YY, Rychahou PG, Le AT, Scott TL, Flight RM, et al. Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget 2018;9:24787-800.
48. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011;17:1498-503.
49. Alcalá AM, Flaherty KT. BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance. Clin Cancer Res 2012;18:33-9.
50. Baenke F, Chaneton B, Smith M, van den Broek N, Hogan K, et al. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol Oncol 2016;10:73-84.
51. Corazao-Rozas P, Guerreschi P, Jendoubi M, André F, Jonneaux A, et al. Mitochondrial oxidative stress is the Achille’s heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget 2013;4:1986-98.
52. Hernandez-Davies JE, Tran TQ, Reid MA, Rosales KR, Lowman XH, et al. Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J Transl Med 2015;13:210.
53. Serkova N, Boros LG. Detection of resistance to Imatinib by metabolic profiling. Am J Pharmacogenomic 2005;5:293-302.
54. Kluza J, Jendoubi M, Ballot C, Dammak A, Jonneaux A, et al. Exploiting mitochondrial dysfunction for effective elimination of Imatinib-resistant leukemic cells. PLoS One 2011;6:e21924.
55. Liu W, Fang Y, Wang XT, Liu J, Dan X, et al. Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pac J Cancer Prev 2014;15:7037-41.
56. Shin YK, Yoo BC, Chang HJ, Jeon E, Hong SH, et al. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 2005;65:3162-70.
57. Denise C, Paoli P, Calvani M, Taddei ML, Giannoni E, et al. 5-Fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget 2015;6:41706-21.
58. Vellinga TT, Borovski T, Boer VCJ de, Fatrai S, van Schelven S, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res 2015;21:2870-9.
59. Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. Br J Cancer 2016;114:1305-12.
60. Jagust P, de Luxán-Delgado B, Parejo-Alonso B, Sancho P. Metabolism-based therapeutic strategies targeting cancer stem cells. Front Pharmacol 2019;10:203.
61. He W, Liang B, Wang C, Li S, Zhao Y, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene 2019;38:4637.
62. Liang XJ, Finkel T, Shen DW, Yin JJ, Aszalos A, et al. SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism. Mol Cancer Res 2008;6:1499-506.
63. Xu Y, Gao W, Zhang Y, Wu S, Liu Y, et al. ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol 2018;53:1055-68.
64. Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ 2016;23:1542.
65. Zhu J, Wu G, Song L, Cao L, Tan Z, et al. NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine 2019;43:238-52.
66. Li J, Zhao S, Zhou X, Zhang T, Zhao L, et al. Inhibition of lipolysis by Mercaptoacetate and Etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to Paclitaxel. PLoS One 2013;8:e74623.
67. Freiburghaus C, Emruli VK, Johansson A, Olsson R, Ek F, et al. Resistance to cytarabine in mantle cell lymphoma is mediated by down-regulation of deoxycytidine kinase at the protein level. Blood 2016;128:1769.
68. Lokody I. Drug resistance: overcoming resistance in acute myeloid leukaemia treatment. Nat Rev Cancer 2014;14:452-3.
69. Farge T, Saland E, Toni Fd, Aroua N, Hosseini M, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov 2017;7:716-35.
70. Carretero MV, Torres L, Latasa U, García-Trevijano ER, Prieto J, et al. Transformed but not normal hepatocytes express UCP2. FEBS Lett 1998;439:55-8.
71. Giatromanolaki A, Balaska K, Kalamida D, Kakouratos C, Sivridis E, et al. Thermogenic protein UCP1 and UCP3 expression in non-small cell lung cancer: relation with glycolysis and anaerobic metabolism. Cancer Biol Med 2017;14:396-404.
72. Horimoto M, Resnick MB, Konkin TA, Routhier J, Wands JR, et al. Expression of uncoupling protein-2 in human colon cancer. Clin Cancer Res 2004;10:6203-7.
73. Klingenberg M. Uncoupling protein--a useful energy dissipator. J Bioenerg Biomembr 1999;31:419-30.
75. Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 2009;69:2163-6.
76. Baffy G. Mitochondrial uncoupling in cancer cells: liabilities and opportunities. Biochim Biophys Acta Bioenerg 2017;1858:655-64.
77. Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, et al. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res 2008;68:2813-9.
78. Nedergaard J, Cannon B. The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol 2003;88:65-84.
79. Pecqueur C, Alves-Guerra C, Ricquier D, Bouillaud F. UCP2, a metabolic sensor coupling glucose oxidation to mitochondrial metabolism? IUBMB Life 2009;61:762-7.
80. Koziel A, Sobieraj I, Jarmuszkiewicz W. Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels. Am J Physiol Heart Circ Physiol 2015;309:H147-56.
81. Dalla Pozza E, Fiorini C, Dando I, Menegazzi M, Sgarbossa A, et al. Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine. BBA-Mol Cell Res 2012;1823:1856-63.
82. Mailloux RJ, Adjeitey CNK, Harper ME. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS One 2010;5:e13289.
83. Collins P, Jones C, Choudhury S, Damelin L, Hodgson H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int 2005;25:880-7.
84. Liu WY, He W, Li H. Exhaustive training increases uncoupling protein 2 expression and decreases Bcl-2/Bax ratio in rat skeletal muscle. Oxid Med Cell Longev 2013;2013:23365696.
85. Deng S, Yang Y, Han Y, Li X, Wang X, et al. UCP2 inhibits ROS-mediated apoptosis in A549 under hypoxic conditions. PLoS One 2012;7:e30714.
86. Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol 2016;3:57-9.
87. Elliott AM, Al-Hajj MA. ABCB8 mediates doxorubicin resistance in melanoma cells by protecting the mitochondrial genome. Mol Cancer Res 2009;7:79-87.
88. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219.
89. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol 2010;19:27-32.
90. Eyre R, Harvey I, Stemke-Hale K, Lennard TWJ, Tyson-Capper A, et al. Reversing paclitaxel resistance in ovarian cancer cells via inhibition of the ABCB1 expressing side population. Tumor Biol 2014;35:9879-92.
91. Begicevic RR, Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance. Int J Mol Sci 2017;18:2362.
92. Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018;24:3222-38.
93. Kubota N, Nishio K, Takeda Y, Ohmori T, Funayama Y, et al. Characterization of an etoposide-resistant human ovarian cancer cell line. Cancer Chemother Pharmacol 1994;34:183-90.
94. Alpsoy A, Yasa S, Gunduz U. Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms. Biomed Pharmacother 2014;68:351-5.
95. Solazzo M, Fantappiè O, D’Amico M, Sassoli C, Tani A, et al. Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res 2009;69:7235-42.
97. Wang X, Green DR, Reed JC. The expanding role of mitochondria in apoptosis. Genes Dev 1998;281:1309-12.
98. Liu R, Page C, Beidler DR, Wicha MS, Núñez G. Overexpression of Bcl-xL promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model. Am J Pathol 1999;155:1861-7.
99. Tu Y, Xu FH, Liu J, Vescio R, Berenson J, et al. Upregulated expression of BCL-2 in multiple myeloma cells induced by exposure to doxorubicin, etoposide, and hydrogen peroxide. Blood 1996;88:1805-12.
100. Kutuk O, Letai A. Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Res 2008;68:7985-94.
101. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 2009;15:1126-32.
102. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007;26:1324-37.
103. Sartorius UA, Krammer PH. Upregulation of bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines. Int J Cancer 2002;97:584-92.
104. Real PJ, Sierra A, Juan Ad, Segovia JC, Lopez-Vega JM, et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 2002;21:7611.
105. Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, et al. Elevated levels of apoptosis regulator proteins P53 and BCL-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urology 1996;156:1511-6.
106. Cho HJ, Kim JK, Kim KD, Yoon HK, Cho MY, et al. Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of Bax translocation in human bladder cancer cells. Cancer Lett 2006;237:56-66.
107. Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res 2000;60:6101-10.
108. Biswas G, Guha M, Avadhani NG. Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene 2005;354:132-9.
109. Colié S, van Veldhoven PP, Kedjouar B, Bedia C, Albinet V, et al. Disruption of Sphingosine 1-Phosphate Lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res 2009;69:9346-53.
110. Renault TT, Elkholi R, Bharti A, Chipuk JE. B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimetics demonstrate differential activities dependent upon the functional repertoire of pro- and anti-apoptotic BCL-2 family proteins. J Biol Chem 2014;289:26481-91.
111. Vogler M, Dinsdale D, Dyer MJS, Cohen GM. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 2009;16:360.
112. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008;68:3421-8.
113. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005;435:677-81.
114. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010;120:142-56.
115. Steele TM, Talbott GC, Sam A, Tepper CG, Ghosh PM, et al. Obatoclax, a BH3 mimetic, enhances cisplatin-induced apoptosis and decreases the clonogenicity of muscle invasive bladder cancer cells via mechanisms that involve the inhibition of pro-survival molecules as well as cell cycle regulators. Int J Mol Sci 2019;20:1285.
116. Luca A de, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 2015;6:14777-95.
117. Salem AF, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle 2012;11:4174-80.
118. Carracedo A, Weiss D, Leliaert AK, Bhasin M, Boer VCJ de, et al. A metabolic prosurvival role for PML in breast cancer. J Clin Invest 2012;122:3088-100.
119. Martinez-Outschoorn UE, Pavlides S, Sotgia F, Lisanti MP. Mitochondrial biogenesis drives tumor cell proliferation. Am J Pathol 2011;178:1949-52.
120. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 2013;23:302-15.
121. Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998;92:829-39.
122. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005;1:361-70.
123. Tan Z, Luo X, Xiao L, Tang M, Bode AM, et al. The role of PGC1α in cancer metabolism and its therapeutic implications. Mol Cancer Ther 2016;15:774-82.
124. Shin SW, Yun SH, Park ES, Jeong JS, Kwak JY, et al. Overexpression of PGC-1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein. Int J Oncol 2015;46:1328-42.
125. Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, et al. PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 2011;71:6888-98.
126. Srivastava S, Barrett JN, Moraes CT. PGC-1alpha/beta upregulation is associated with improved oxidative phosphorylation in cells harboring nonsense mtDNA mutations. Hum Mol Genet 2007;16:993-1005.
127. Kim B, Jung JW, Jung J, Han Y, Suh DH, et al. PGC1α induced by reactive oxygen species contributes to chemoresistance of ovarian cancer cells. Oncotarget 2017;8:60299-311.
128. Gopal YNV, Rizos H, Chen G, Deng W, Frederick DT, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res 2014;74:7037-47.
129. Gabrielson M, Björklund M, Carlson J, Shoshan M. Expression of mitochondrial regulators PGC1α and TFAM as putative markers of subtype and chemoresistance in epithelial ovarian carcinoma. PLoS One 2014;9:e107109.
130. Luo C, Widlund HR, Puigserver P. PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer 2016;2:619-31.
131. Yun CW, Han YS, Lee SH. PGC-1α controls mitochondrial biogenesis in drug-resistant colorectal cancer cells by regulating endoplasmic reticulum stress. Int J Mol Sci 2019;20:1707.
132. Douarre C, Sourbier C, Dalla Rosa I, Brata Das B, Redon CE, et al. Mitochondrial Topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism. PLoS One 2012;7:e41094.
133. Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, et al. Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 2004;23:7018.
134. Fu X, Wan S, Lyu YL, Liu LF, Qi H. Etoposide Induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 2008;3:e2009.
135. Farnie G, Sotgia F, Lisanti MP. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget 2015;6:30472-86.
136. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell 2013;23:302-15.
137. Lamb R, Bonuccelli G, Ozsvári B, Peiris-Pagès M, Fiorillo M, et al. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: understanding WNT/FGF-driven anabolic signaling. Oncotarget 2015;6:30453-71.
138. Rose PG, Mossbruger K, Fusco N, Smrekar M, Eaton S, et al. Gemcitabine reverses cisplatin resistance: demonstration of activity in platinum- and multidrug-resistant ovarian and peritoneal carcinoma. Gynecol Oncol 2003;88:17-21.