REFERENCES

1. Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res 2012;18:1855-62.

2. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 2017;17:318-32.

3. Dienstmann R, Patnaik A, Garcia-Carbonero R, Cervantes A, Benavent M, et al. Safety and activity of the first-in-class Sym004 anti-EGFR antibody mixture in patients with refractory colorectal cancer. Cancer Discov 2015;5:598-609.

4. Hall TG, Yu Y, Eathiraj S, Wang Y, Savage RE, et al. Preclinical activity of ARQ 087, a novel inhibitor targeting FGFR dysregulation. PLoS One 2016;11:e0162594.

5. Gavine PR, Mooney L, Kilgour E, Thomas AP, Al-Kadhimi K, et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res 2012;72:2045-56.

6. Guagnano V, Kauffmann A, Wöhrle S, Stamm C, Ito M, et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective Pan-FGFR inhibitor. Cancer Discov 2012;2:1118-33.

7. Perera TPS, Jovcheva E, Mevellec L, Vialard J, De Lange D, et al. Discovery and pharmacological characterization of JNJ-42756493 (Erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol Cancer Ther 2017;16:1010-20.

8. Kalyukina M, Yosaatmadja Y, Middleditch MJ, Patterson AV, Smaill JB, et al. TAS-120 cancer target binding: defining reactivity and revealing the first fibroblast growth factor receptor 1 (FGFR1) irreversible structure. ChemMedChem 2019;14:494-500.

9. Hollebecque A, Lihou C, Zhen H, Abou-Alfa GK, Borad M, et al. 756PInterim results of fight-202, a phase II, open-label, multicenter study of INCB054828 in patients (pts) with previously treated advanced/metastatic or surgically unresectable cholangiocarcinoma (CCA) with/without fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations. Ann Oncol 2018;29.

10. Murtuza A, Bulbul A, Shen JP, Keshavarzian P, Woodward BD, et al. Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer. Cancer Res 2019;79:689-98.

11. McCoach CE, Le AT, Gowan K, Jones K, Schubert L, et al. Resistance mechanisms to targeted therapies in ROS1(+) and ALK(+) non-small cell lung cancer. Clin Cancer Res 2018;24:3334-47.

12. McLean SR, Gana-Weisz M, Hartzoulakis B, Frow R, Whelan J, et al. Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 2005;4:2008-15.

13. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 2013;3:636-47.

14. Wang Y, Ding X, Wang S, Moser CD, Shaleh HM, et al. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Lett 2016;380:163-73.

15. Sia D, Losic B, Moeini A, Cabellos L, Hao K, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun 2015;6:6087.

16. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014;59:1427-34.

17. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, et al. Genomic spectra of biliary tract cancer. Nat Genet 2015;47:1003-10.

18. Bakkar AA, Wallerand H, Radvanyi F, Lahaye JB, Pissard S, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 2003;63:8108-12.

19. Lamy A, Gobet F, Laurent M, Blanchard F, Varin C, et al. Molecular profiling of bladder tumors based on the detection of FGFR3 and TP53 mutations. J Urol 2006;176:2686-9.

20. Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet 2013;22:795-803.

21. Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS one 2012;7:e30801.

22. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Science translational medicine 2010;2:62ra93.

23. Heist RS, Mino-Kenudson M, Sequist LV, Tammireddy S, Morrissey L, et al. FGFR1 amplification in squamous cell carcinoma of the lung. J Thorac Oncol 2012;7:1775-80.

24. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 2016;22:259-67.

25. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 2010;29:2013-23.

26. Su X, Zhan P, Gavine PR, Morgan S, Womack C, et al. FGFR2 amplification has prognostic significance in gastric cancer: results from a large international multicentre study. Br J Cancer 2014;110:967-75.

27. Guagnano V, Kauffmann A, Wohrle S, Stamm C, Ito M, et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2012;2:1118-33.

28. Karkera JD, Cardona GM, Bell K, Gaffney D, Portale JC, et al. Oncogenic characterization and pharmacologic sensitivity of activating fibroblast growth factor receptor (FGFR) genetic alterations to the selective FGFR inhibitor Erdafitinib. Mol Cancer Ther 2017;16:1717-26.

29. Herrera-Abreu MT, Pearson A, Campbell J, Shnyder SD, Knowles MA, et al. Parallel RNA interference screens identify EGFR activation as an escape mechanism in FGFR3-mutant cancer. Cancer Discov 2013;3:1058-71.

30. Aggarwal C, Redman MW, Lara P, Borghaei H, Hoffman PC, et al. Phase II study of the FGFR inhibitor AZD4547 in previously treated patients with FGF pathway-activated stage IV squamous cell lung cancer (SqNSCLC): LUNG-MAP sub-study SWOG S1400D. J Clin Oncol 2017;35:9055.

31. Nogova L, Sequist LV, Garcia JMP, Andre F, Delord JP, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol 2017;35:157-65.

32. Van Cutsem E, Bang YJ, Mansoor W, Petty RD, Chao Y, et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann Oncol 2017;28:1316-24.

33. Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol 2018;36:276-82.

34. Mazzaferro V, El-Rayes BF, Droz Dit Busset M, Cotsoglou C, Harris WP, et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J Cancer 2019;120:165-71.

35. Bahleda R, Italiano A, Hierro C, Mita AC, Cervantes A, et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin Cancer Res 2019; doi: 10.1158/1078-0432.

36. Chen YY, Qing M, Li J, De Porre P, Park JO, et al. 624PDPreliminary results of a ph2a study to evaluate the clinical efficacy and safety of erdafitinib in Asian patients with biomarker-selected advanced cholangiocarcinoma (CCA). Ann Oncol 2018;29.

37. Meric-Bernstam F, He H, Huang J, Winkler R, Arkenau H, et al. O-001Efficacy of TAS-120, an irreversible fibroblast growth factor receptor (FGFR) inhibitor, in cholangiocarcinoma patients with FGFR pathway alterations who were previously treated with chemotherapy and other FGFR inhibitors. Ann Oncol 2018;29.

38. Siefker-Radtke AO, Necchi A, Park SH, GarcÃa-Donas JS, Huddart RA, et al. First results from the primary analysis population of the phase 2 study of erdafitinib (ERDA; JNJ-42756493) in patients (pts) with metastatic or unresectable urothelial carcinoma (mUC) and FGFR alterations (FGFRalt). J Clin Oncol 2018;36:4503.

39. Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov 2018;8:812-21.

40. Arkenau HT, Saggese M, Hollebecque A, Mathewson A, Lemech CR, et al. A phase 1 expansion cohort of the fibroblast growth factor receptor (FGFR) inhibitor AZD4547 in patients (pts) with advanced gastric (GC) and gastroesophageal (GOJ) cancer. J Clin Oncol 2014;32:2620.

41. Pearson A, Smyth E, Babina IS, Herrera-Abreu MT, Tarazona N, et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov 2016;6:838-51.

42. Michael M, Bang YJ, Park YS, Kang YK, Kim TM, et al. A phase 1 study of LY2874455, an oral selective pan-FGFR inhibitor, in patients with advanced cancer. Target Oncol 2017;12:463-74.

43. Necchi A, Castellano DE, Mellado B, Pang S, Urun Y, et al. Fierce-21: phase II study of vofatmab (B-701), a selective inhibitor of FGFR3, as salvage therapy in metastatic urothelial carcinoma (mUC). J Clin Oncol 2019;37:409.

44. Paik PK, Shen R, Berger MF, Ferry D, Soria JC, et al. A phase Ib open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers. Clin Cancer Res 2017;23:5366-73.

45. Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol 2015;33:3401-8.

46. Kwek SS, Roy R, Zhou H, Climent J, Martinez-Climent JA, et al. Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene 2009;28:1892-903.

47. Letessier A, Sircoulomb F, Ginestier C, Cervera N, Monville F, et al. Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer 2006;6:245.

48. Slosberg ED, Kang BP, Peguero J, Taylor M, Bauer TM, et al. Signature program: a platform of basket trials. Oncotarget 2018;9:21383-95.

49. Lee DH, Yoon H, Park S, Kim JS, Ahn YH, et al. Urinary exosomal and cell-free DNA detects somatic mutation and copy number alteration in urothelial carcinoma of bladder. Sci Rep 2018;8:14707.

50. Malchers F, Ercanoglu M, Schutte D, Castiglione R, Tischler V, et al. Mechanisms of primary drug resistance in FGFR1-amplified lung cancer. Clin Cancer Res 2017;23:5527-36.

51. Kim SM, Kim H, Yun MR, Kang HN, Pyo KH, et al. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis 2016;5:e241.

52. Lee SY, Na YJ, Jeong YA, Kim JL, Oh SC, et al. Upregulation of EphB3 in gastric cancer with acquired resistance to a FGFR inhibitor. Int J Biochem Cell Biol 2018;102:128-37.

53. Wang J, Mikse O, Liao RG, Li Y, Tan L, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene 2015;34:2167-77.

54. Chen J, Bell J, Lau BT, Whittaker T, Stapleton D, et al. A functional CRISPR/Cas9 screen identifies kinases that modulate FGFR inhibitor response in gastric cancer. Oncogenesis 2019;8:33.

55. Cowell JK, Qin H, Hu T, Wu Q, Bhole A, et al. Mutation in the FGFR1 tyrosine kinase domain or inactivation of PTEN is associated with acquired resistance to FGFR inhibitors in FGFR1-driven leukemia/lymphomas. Int J Cancer 2017;141:1822-9.

56. Datta J, Damodaran S, Parks H, Ocrainiciuc C, Miya J, et al. Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Mol Cancer Ther 2017;16:614-24.

57. Gimenez-Xavier P, Pros E, Aza A, Moran S, Tonda R, et al. Deep analysis of acquired resistance to FGFR1 inhibitor identifies MET and AKT activation and an expansion of AKT1 mutant cells. Oncotarget 2018;9:31549-58.

58. Sase H, Nakanishi Y, Aida S, Horiguchi-Takei K, Akiyama N, et al. Acquired JHDM1D-BRAF fusion confers resistance to FGFR inhibition in FGFR2-amplified gastric cancer. Mol Cancer Ther 2018;17:2217-25.

59. Bockorny B, Rusan M, Chen W, Liao RG, Li Y, et al. RAS-MAPK reactivation facilitates acquired resistance in FGFR1-amplified lung cancer and underlies a rationale for upfront FGFR-MEK blockade. Mol Cancer Ther 2018;17:1526-39.

60. Wang X, Ai J, Liu H, Peng X, Chen H, et al. The secretome engages STAT3 to favor a cytokine-rich microenvironment in mediating acquired resistance to FGFR inhibitors. Mol Cancer Ther 2019;18:667-79.

61. Lau WM, Teng E, Huang KK, Tan JW, Das K, et al. Acquired resistance to FGFR inhibitor in diffuse-type gastric cancer through an AKT-independent PKC-mediated phosphorylation of GSK3beta. Mol Cancer Ther 2018;17:232-42.

62. Fearon AE, Carter EP, Clayton NS, Wilkes EH, Baker AM, et al. PHLDA1 mediates drug resistance in receptor tyrosine kinase-driven cancer. Cell Rep 2018;22:2469-81.

63. Wang L, Sustic T, Leite de Oliveira R, Lieftink C, Halonen P, et al. A functional genetic screen identifies the phosphoinositide 3-kinase pathway as a determinant of resistance to fibroblast growth factor receptor inhibitors in FGFR mutant urothelial cell carcinoma. Eur Urol 2017;71:858-62.

64. Gozgit JM, Squillace RM, Wongchenko MJ, Miller D, Wardwell S, et al. Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemother Pharmacol 2013;71:1315-23.

65. Hu Y, Lu H, Zhang J, Chen J, Chai Z, et al. Essential role of AKT in tumor cells addicted to FGFR. Anticancer Drugs 2014;25:183-8.

66. Yu Y, Hall T, Eathiraj S, Wick MJ, Schwartz B, et al. In-vitro and in-vivo combined effect of ARQ 092, an AKT inhibitor, with ARQ 087, a FGFR inhibitor. Anticancer Drugs 2017;28:503-13.

67. Grygielewicz P, Dymek B, Bujak A, Gunerka P, Stanczak A, et al. Epithelial-mesenchymal transition confers resistance to selective FGFR inhibitors in SNU-16 gastric cancer cells. Gastric Cancer 2016;19:53-62.

68. Ryan MR, Sohl CD, Luo B, Anderson KS. The FGFR1 V561M gatekeeper mutation drives AZD4547 resistance through STAT3 activation and EMT. Mol Cancer Res 2019;17:532-43.

69. Sohl CD, Ryan MR, Luo B, Frey KM, Anderson KS. Illuminating the molecular mechanisms of tyrosine kinase inhibitor resistance for the FGFR1 gatekeeper mutation: the Achilles’ heel of targeted therapy. ACS Chem Biol 2015;10:1319-29.

70. Byron SA, Chen H, Wortmann A, Loch D, Gartside MG, et al. The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors. Neoplasia 2013;15:975-88.

71. Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7:252-63.

72. Chell V, Balmanno K, Little AS, Wilson M, Andrews S, et al. Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene 2013;32:3059-70.

73. Goyal L, Shi L, Liu LY, Fece de la Cruz F, Lennerz JK, et al. TAS-120 overcomes resistance to ATP-competitive FGFR inhibitors in patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma. Cancer Discov 2019; doi: 10.1158/2159-8290.CD-19-0182.

74. Anker P, Stroun M. Circulating DNA in plasma or serum. Medicina (B Aires) 2000;60:699-702.

75. Kim SY, Ahn T, Bang H, Ham JS, Kim J, et al. Acquired resistance to LY2874455 in FGFR2-amplified gastric cancer through an emergence of novel FGFR2-ACSL5 fusion. Oncotarget 2017;8:15014-22.

76. Tan L, Wang J, Tanizaki J, Huang Z, Aref AR, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A 2014;111:E4869-77.

77. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 2017; doi: 10.1056/NEJMoa1713137.

78. Fumarola C, Bozza N, Castelli R, Ferlenghi F, Marseglia G, et al. Expanding the arsenal of FGFR inhibitors: a novel chloroacetamide derivative as a new irreversible agent with anti-proliferative activity against FGFR1-amplified lung cancer cell lines. Front Oncol 2019;9:179.

79. Bendell JC, Rogers S, Xiang H, Pierce KL, Krishnan K, et al. FPA144-001: a first in human study of FPA 144, an ADCC-enhanced, FGFR2b isoform-selective monoclonal antibody in patients with advanced solid tumors. J Clin Oncol 2016;34:140.

80. Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R. Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther 2017;179:171-87.

81. Hyman DM, Tran B, Corral Jaime J, Garralda E, Machiels JPH, et al. Phase Ib study of BGJ398 in combination with BYL719 in patients (pts) with select advanced solid tumors. J Clin Oncol 2016;34:2500.

82. Palakurthi S, Kuraguchi M, Zacharek S, Liu J, Bonal D, et al. Abstract B27: improved survival with erdafitinib (JNJ-42756493) and PD-1 blockade mediated by enhancement of anti-tumor immunity in an FGFR2-driven genetically engineered mouse model of lung cancer. Cancer Immunol Res 2017;5:B27.

83. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2017;18:312-22.

84. Bellmunt J, De Wit R, Vaughn DJ, Fradet Y, Lee JL, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;376:1015-26.

85. Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol 2018;19:51-64.

86. Joerger M, Cassier P, Penel N, Cathomas R, Richly H, et al. Rogaratinib treatment of patients with advanced urothelial carcinomas prescreened for tumor FGFR mRNA expression. J Clin Oncol 2018;36:494.

87. Necchi A, Serbest G, Zhen H, Loriot Y, Pouessel D, et al. 900PInterim results of fight-201, a phase II, open-label, multicenter study of INCB054828 in patients (pts) with metastatic or surgically unresectable urothelial carcinoma (UC) harboring fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations (GA). Ann Oncol 2018;29.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/