REFERENCES

1. Howlader N, Krapcho M, Miller D, Brest A, Yu M, et al. SEER Cancer Statistics Review, 1975-2016, National Cancer Institute. Bethesda MD, based on November 2018 SEER data submission, posted to the SEER web site, April 2019. Avaliable from: https://seer.cancer.gov/csr/1975_2016/ [Last accessed on 26 June 2019].

2. Adamson PC. Improving the outcome for children with cancer: development of targeted new agents. CA Cancer J Clin 2015;65:212-20.

3. Vaupel PW. The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin Padiatr 1997;209:243-9.

4. Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 2009;6:638-47.

5. Stewart CF, Zamboni WC, Crom R, Gajjar A, Heideman RL, et al. Topoisomerase I interactive drugs in children with cancer. Invest New Drugs 1996;14:37-47.

6. Masetti R, Biagi C, Zama D, Vendemini F, Martoni A, et al. Retinoids in pediatric onco-hematology: the model of acute promyelocytic leukemia and neuroblastoma. Adv Ther 2012;29:747-62.

7. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol 2015;33:3029-35.

8. Jakacki RI, Cohen KJ, Buxton A, Krailo, Burger PC, et al. Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: a report of the Children’s Oncology Group ACNS0423 study. Neuro Oncol 2016;18:1442-50.

9. Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol 2013;10:697-710.

10. Okabe M, Unno M, Harigae H, Kaku M, Okitsu Y, et al. Characterization of the organic cation transporter SLC22A16: a doxorubicin importer. Biochem Biophys Res Commun 2005;333:754-62.

11. Zhao H, Shi P, Deng M, Jiang Z, Li Y, et al. Low dose triptolide reverses chemoresistance in adult acute lymphoblastic leukemia cells via reactive oxygen species generation and DNA damage response disruption. Oncotarget 2016;7:85515-28.

12. Hayes FA, Green AA, Mauer AM. Correlation of cell kinetic and clinical response to chemotherapy in disseminated neuroblastoma. Cancer Res 1977;37:3766-70.

13. Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, et al. The landscape of genomic alterations across childhood cancers. Nature 2018;555:321-7.

14. Fruhwald MC, Witt O. The epigenetics of cancer in children. Klin Padiatr 2008;220:333-41.

15. Moore SW. Developmental genes and cancer in children. Pediatr Blood Cancer 2009;52:755-60.

16. Lawlor ER, Thiele CJ. Epigenetic changes in pediatric solid tumors: promising new targets. Clin Cancer Res 2012;18:2768-79.

17. Yiu TT, Li W. Pediatric cancer epigenome and the influence of folate. Epigenomics 2015;7:961-73.

18. La Madrid AM, Kieran MW. Epigenetics in clinical management of children and adolescents with brain tumors. Curr Cancer Drug Targets 2018;18:57-64.

19. Nordlund J, Syvanen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2018;51:129-38.

20. Filbin M, Monje M. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat Med 2019;25:367-76.

21. Schleiermacher G, Mosseri V, London WB, Maris JM, Brodeur GM, et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 2012;107:1418-22.

22. Chicard M, Boyault S, Colmet Daage L, Richer W, Gentien D, et al. Genomic copy number profiling using circulating free tumor DNA highlights heterogeneity in neuroblastoma. Clin Cancer Res 2016;22:5564-73.

23. Defferrari R, Mazzocco K, Ambros IM, Ambros PF, Bedwell C, et al. Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br J Cancer 2015;112:290-5.

24. Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, et al. High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer 2003;38:215-25.

25. Smida J, Xu H, Zhang Y, Baumhoer D, Ribi S, et al. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int J Cancer 2017;141:816-28.

26. Behjati S, Tarpey PS, Haase K, Ye H, Young MD, et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun 2017;8:15936.

27. Ratnaparkhe M, Wong JKL, Wei PC, Hlevnjak M, Kolb T, et al. Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat Commun 2018;9:4760.

28. Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012;148:59-71.

29. Gratias EJ, Dome JS, Jennings LJ, Chi YY, Tian J, et al. Association of Chromosome 1q Gain With Inferior Survival in Favorable-Histology Wilms Tumor: a report from the children’s oncology group. J Clin Oncol 2016;34:3189-94.

30. Radtke I, Mullighan CG, Ishii M, Su X, Cheng J, et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci U S A 2009;106:12944-9.

31. Farber S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood 1949;4:160-7.

32. Price CH, Zhuber K, Salzer-Kuntschik M, Salzer M, Willert HG, et al. Osteosarcoma in children. A study of 125 cases. J Bone Joint Surg Br 1975;57:341-5.

33. Smith M, Abrams J, Trimble EL, Ungerleider RS. Dose Intensity of Chemotherapy for Childhood Cancers. Oncologist 1996;1:293-304.

34. Neil EC, Hanmantgad S, Khakoo Y. Neurological Complications of Pediatric Cancer. J Child Neurol 2016;31:1412-20.

35. Weyl-Ben-Arush M. The price of the successful treatment of pediatric malignancies. Curr Pediatr Rev 2017;13:4-7.

36. Pluimakers VG, van Waas M, Neggers S, van den Heuvel-Eibrink MM. Metabolic syndrome as cardiovascular risk factor in childhood cancer survivors. Crit Rev Oncol Hematol 2019;133:129-41.

37. Roeca C, Dovey S, Polotsky AJ. Recommendations for assessing ovarian health and fertility potential in survivors of childhood cancer. Maturitas 2019;122:57-9.

38. Sklar CA, Antal Z, Chemaitilly W, Cohen LE, Follin C, et al. Hypothalamic-pituitary and growth disorders in survivors of childhood cancer: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2018;103:2761-84.

39. Dixon SB, Bjornard KL, Alberts NM, Armstrong GT, Brinkman TM, et al. Factors influencing risk-based care of the childhood cancer survivor in the 21st century. CA Cancer J Clin 2018;68:133-52.

40. Ehrhardt MJ, Hochberg J, Bjornard KL, Brinkman TM. Long-term survivors of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol 2019;185:1099-110.

41. Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, et al. Influence of p olymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008;18:515-23.

42. Algeciras-Schimnich A, O’Kane DJ, Snozek CL. Pharmacogenomics of tamoxifen and irinotecan therapies. Clin Lab Med 2008;28:553-67.

43. Queckenberg C, Erlinghagen V, Baken BC, Van Os SH, Wargenau M, et al. Pharmacokinetics and pharmacogenetics of capecitabine and its metabolites following replicate administration of two 500 mg tablet formulations. Cancer Chemother Pharmacol 2015;76:1081-91.

44. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet 2018;57:1229-54.

45. Mittal B, Tulsyan S, Kumar S, Mittal RD, Agarwal G. Cytochrome P450 in Cancer Susceptibility and Treatment. Adv Clin Chem 2015;71:77-139.

46. Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J 2013;13:1-11.

47. Alini TP, Francine TG, Antonio SP, Maria TSA, Reynaldo JGF, et al. CYP genes in osteosarcoma: Their role in tumorigenesis, pulmonary metastatic microenvironment and treatment response. Oncotarget 2017;8:38530-40.

48. Melanie MH, Marieke JHC, Hans G, Remco RM, Hanneke IV, et al. A First Step toward Personalized Medicine in Osteosarcoma: Pharmacogenetics as Predictive Marker of Outcome after Chemotherapy-Based Treatment. Clin Cancer Res 2015;21:3436-41.

49. Valencia-Cervantes J, Huerta-Yepez S, Aquino-Jarquín G, Rodríguez-Enríquez S, Martínez-Fong D, et al. Hypoxia increases chemoresistance in human medulloblastoma DAOY cells via hypoxiainducible factor 1alphamediated downregulation of the CYP2B6, CYP3A4 and CYP3A5 enzymes and inhibition of cell proliferation. Oncol Rep 2019;41:178-90.

50. Darwish MH, Farah RA, Farhat GN, Torbey PH, Ghandour FA, et al. Association of CYP3A4/5 genotypes and expression with the survival of patients with neuroblastoma. Mol Med Rep 2015;11:1462-68.

51. Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, et al. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2011;56:361-7.

52. Araoz HV, D’Aloi K, Foncuberta ME, Sanchez La Rosa CG, Alonso CN, et al. Pharmacogenetic studies in children with acute lymphoblastic leukemia in Argentina. Leuk Lymphoma 2015;56:1370-78.

53. Borst L, Wallerek S, Dalhoff K, Rasmussen KK, Wesenberg F, et al. The impact of CYP3A5*3 on risk and prognosis in childhood acute lymphoblastic leukemia. Eur J Haematol 2011;86:477-83.

54. Gezsi A, Lautner-Csorba O, Erdelyi DJ, Hullam G, Antal P, et al. In interaction with gender a common CYP3A4 polymorphism may influence the survival rate of chemotherapy for childhood acute lymphoblastic leukemia. Pharmacogenomics J 2015;15:241-47.

55. Sims RP. The effect of race on the CYP3A-mediated metabolism of vincristine in pediatric patients with acute lymphoblastic leukemia. J Oncol Pharm Pract 2016;22:76-81.

56. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990;336:225-9.

57. Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol 2014;77:704-14.

58. Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int J Mol Sci 2016;17:E1502.

59. Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, et al. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 1986;83:4538-42.

60. Goldstein LJ, Fojo AT, Ueda K, Crist W, Green A, et al. Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J Clin Oncol 1990;8:128-36.

61. Nooter K, Sonneveld P, Oostrum R, Herweijer H, Hagenbeek T, et al. Overexpression of the mdr1 gene in blast cells from patients with acute myelocytic leukemia is associated with decreased anthracycline accumulation that can be restored by cyclosporin-A. Int J Cancer 1990;45:263-8.

62. Benard J, Bourhis J, de Vathaire F, Ferrandis E, Terrier-Lacombe MJ, et al. Prognostic value of MDR1 gene expression in neuroblastoma: results of a multivariate analysis. Prog Clin Biol Res 1994;385:111-6.

63. Gsur A, Zochbauer S, Gotzl M, Kyrle P A, Lechner K, et al. MDR1 RNA expression as a prognostic factor in acute myeloid leukemia: an update. Leuk Lymphoma 1993;12:91-4.

64. Wunder JS, Bell RS, Wold L, Andrulis IL. Expression of the multidrug resistance gene in osteosarcoma: a pilot study. J Orthop Res 1993;11:396-403.

65. Pirker R, Wallner J, Geissler K, Linkesch W, Haas OA, et al. MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst 1991;83:708-12.

66. Molina-Ortiz D, Torres-Zarate C, Cardenas-Cardos R, Palacios-Acosta JM, Hernandez-Arrazola D, et al. MDR1 not CYP3A4 gene expression is the predominant mechanism of innate drug resistance in pediatric soft tissue sarcoma patients. Cancer Biomark 2018;22:317-24.

67. Chan HS, Haddad G, Thorner PS, DeBoer G, Lin YP, et al. P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 1991;325:1608-14.

68. Hodorova I, Rybarova S, Vecanova J, Solar P, Plank L, et al. Relation between expression pattern of wild-type p53 and multidrug resistance proteins in human nephroblastomas. Acta Histochem 2013;115:273-8.

69. Fazlina N, Maha A, Zarina AL, Hamidah A, Zulkifli SZ, et al. Assessment of P-gp and MRP1 activities using MultiDrugQuant Assay Kit: a preliminary study of correlation between protein expressions and its functional activities in newly diagnosed acute leukaemia patients. Malays J Pathol 2008;30:87-93.

70. Kourti M, Vavatsi N, Gombakis N, Sidi V, Tzimagiorgis G, et al. Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol 2007;86:166-73.

71. Haber M, Smith J, Bordow SB, Flemming C, Cohn SL, et al. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J Clin Oncol 2006;24:1546-53.

72. Li Y, Zhao L, Li N, Miao Y, Zhou H, et al. miR-9 regulates the multidrug resistance of chronic myelogenous leukemia by targeting ABCB1. Oncol Rep 2017;37:2193-200.

73. Hontecillas-Prieto L, Garcia-Dominguez DJ, Vaca DP, Garcia-Mejias R, Marcilla D, et al. Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients. Oncotarget 2017;8:11173-86.

74. Ruiz-Pinto S, Pita G, Patino-Garcia A, Garcia-Miguel P, Alonso J, et al. Identification of genetic variants in pharmacokinetic genes associated with Ewing Sarcoma treatment outcome. Ann Oncol 2016;27:1788-93.

75. Kuss BJ, Deeley RG, Cole SP, Willman CL, Kopecky KJ, et al. The biological significance of the multidrug resistance gene MRP in inversion 16 leukemias. Leuk Lymphoma 1996;20:357-64.

76. Oda Y, Rose I, Radig K, Wagemann W, Mittler U, et al. Expression of MDR1/p-glycoprotein and multidrug resistance-associated protein in childhood solid tumours. Virchows Arch 1997;430:99-105.

77. El-Sharnouby JA, Abou El-Enein AM, El Ghannam DM, El-Shanshory MR, Hagag AA, et al. Expression of lung resistance protein and multidrug resistance-related protein (MRP1) in pediatric acute lymphoblastic leukemia. J Oncol Pharm Pract 2010;16:179-88.

78. Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, et al. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 2002;16:1443-47.

79. Rodrigo MAM, Buchtelova H, Jimenez AMJ, Adam P, Babula P, et al. Transcriptomic Landscape of Cisplatin-Resistant Neuroblastoma Cells. Cells 2019;8:E235.

80. Ferrandis E, Da Silva J, Riou G, Benard I. Coactivation of the MDR1 and MYCN genes in human neuroblastoma cells during the metastatic process in the nude mouse. Cancer Res 1994;54:2256-61.

81. Haber M, Bordow SB, Haber PS, Marshall GM, Stewart BW, et al. The prognostic value of MDR1 gene expression in primary untreated neuroblastoma. Eur J Cancer 1997;33:2031-36.

82. Xi G, Li YD, Grahovac G, Rajaram V, Wadhwani N, et al. Targeting CD133 improves chemotherapeutic efficacy of recurrent pediatric pilocytic astrocytoma following prolonged chemotherapy. Mol Cancer 2017;16.

83. Dabaghi M, Rahgozar S, Moshtaghian J, Moafi A, Abedi M, et al. Overexpression of SORCIN is a Prognostic Biomarker for Multidrug-Resistant Pediatric Acute Lymphoblastic Leukemia and Correlates with Upregulated MDR1/P-gp. Genet Test Mol Biomarkers 2016;20:516-21.

84. Hu R, Yan Y, Li Q, Lin Y, Jin W, et al. Increased drug efflux along with midkine gene high expression in childhood B-lineage acute lymphoblastic leukemia cells. Int J Hematol 2010;92:105-10.

85. Shi CJ, Wang F, Ren MF, Mi YJ, Yan YY, et al. Up-regulation of ABCB1/P-glycoprotein by escaping promoter hypermethylation indicates poor prognosis in hematologic malignancy patients with and without bone marrow transplantation. Leuk Res 2011;35:73-9.

86. Warmann S, Hunger M, Teichmann B, Flemming P, Gratz KF, et al. The role of the MDR1 gene in the development of multidrug resistance in human hepatoblastoma: clinical course and in vivo model. Cancer 2002;95:1795-801.

87. Janiszewska H, Styczynski J, Kolodziej B, Wysocki M, Haus O. Changes in the MDR1 gene expression after short-term ex vivo therapy with prednisolone have prognostic impact in childhood acute lymphoblastic leukemia. Ann Hematol 2009;88:1193-98.

88. Pongstaporn W, Pakakasama S, Chaksangchaichote P, Pongtheerat T, Hongeng, et al. MDR1 C3435T and C1236T polymorphisms: association with high-risk childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev 2015;16:2839-43.

89. Schaich M, Kestel L, Pfirrmann M, Robel K, Illmer T, et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 2009;20:175-81.

90. Jamroziak K, Mlynarski W, Balcerczak E, Mistygacz M, Trelinska J, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004;72:314-21.

91. Chung ES, Bok E, Sohn S, Lee YD, Baik HH, et al. GT1b-induced neurotoxicity is mediated by the Akt/GSK-3/tau signaling pathway but not caspase-3 in mesencephalic dopaminergic neurons. BMC Neurosci 2010;11:74.

92. Mhaidat NM, Alshogran OY, Khabour OF, Alzoubi KH, Matalka II, et al. Multi-drug resistance 1 genetic polymorphism and prediction of chemotherapy response in Hodgkin’s Lymphoma. J Exp Clin Cancer Res 2011;30:68.

93. Jamroziak K, Robak T. Do polymorphisms in ABC transporter genes influence risk of childhood acute lymphoblastic leukemia? Leuk Res 2008;32:1173-75.

94. Yue Q, Xiong B, Chen L, Chen Y, Bu F, et al. MDR1 C3435T polymorphism and childhood acute lymphoblastic leukemia susceptibility: an updated meta-analysis. Biomed Pharmacother 2015;69:76-81.

95. Howell SB, Safaei R, Larson CA, Sailor MJ. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol Pharmacol 2010;77:887-94.

96. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, et al; International Transporter C. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-36.

97. Fox E, Widemann BC, Pastakia D, Chen CC, Yang SX, et al. Pharmacokinetic and pharmacodynamic study of tariquidar (XR9576), a P-glycoprotein inhibitor, in combination with doxorubicin, vinorelbine, or docetaxel in children and adolescents with refractory solid tumors. Cancer Chemother Pharmacol 2015;76:1273-83.

98. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell 2007;28:739-45.

99. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 2014;7:104-12.

100. Wasserman JD, Novokmet A, Eichler-Jonsson C, Ribeiro RC, Rodriguez-Galindo C, et al. Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: a children’s oncology group study. J Clin Oncol 2015;33:602-9.

101. Malkin D. Li-fraumeni syndrome. Genes Cancer 2011;2:475-84.

102. Izycka-Swieszewska E, Bien E, Stefanowicz J, Szurowska E, Szutowicz-Zielinska E, et al. Malignant Gliomas as Second Neoplasms in Pediatric Cancer Survivors: Neuropathological Study. Biomed Res Int 2018;2018:4596812.

103. Pollack IF, Finkelstein SD, Woods J, Burnham J, Holmes EJ, et al. Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 2002;346:420-7.

104. Ackermann S, Cartolano M, Hero B, Welte A, Kahlert Y, et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018;362:1165-70.

105. Cattelani S, Ferrari-Amorotti G, Galavotti S, Defferrari R, Tanno B, et al. The p53 codon 72 Pro/Pro genotype identifies poor-prognosis neuroblastoma patients: correlation with reduced apoptosis and enhanced senescence by the p53-72P isoform. Neoplasia 2012;14:634-43.

106. Layfield LJ, Thompson JK, Dodge RK, Kerns BJ. Prognostic indicators for neuroblastoma: stage, grade, DNA ploidy, MIB-1-proliferation index, p53, HER-2/neu and EGFr--a survival study. J Surg Oncol 1995;59:21-27.

107. Veschi V, Liu Z, Voss TC, Ozbun L, Gryder B, et al. Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell 2017;31:50-63.

108. Felix CA, Hosler MR, Provisor D, Salhany K, Sexsmith EA, et al. The p53 gene in pediatric therapy-related leukemia and myelodysplasia. Blood 1996;87:4376-81.

109. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood 2017;129:2347-58.

110. Takagi M, Yoshida M, Nemoto Y, Tamaichi H, Tsuchida R, et al. Loss of DNA Damage Response in Neuroblastoma and Utility of a PARP Inhibitor. J Natl Cancer Inst 2017;109.

111. Ballinger ML, Goode DL, Ray-Coquard I, James PA, Mitchell G, et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol 2016;17:1261-71.

112. Chen C, Bartenhagen C, Gombert M, Okpanyi V, Binder V, et al. Next-generation-sequencing of recurrent childhood high hyperdiploid acute lymphoblastic leukemia reveals mutations typically associated with high risk patients. Leuk Res 2015;39:990-1001.

113. Richmond J, Carol H, Evans K, High L, Mendomo A, et al. Effective targeting of the P53-MDM2 axis in preclinical models of infant MLL-rearranged acute lymphoblastic leukemia. Clin Cancer Res 2015;21:1395-405.

114. Gu L, Zhu N, Findley HW, Zhou M. MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia 2008;22:730-9.

115. Zhou M, Gu L, Findley HW, Jiang R, Woods WG. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res 2003;63:6357-62.

116. Inomistova MV, Svergun NM, Khranovska NM, Skachkova OV, Gorbach OI, et al. Prognostic significance of MDM2 gene expression in childhood neuroblastoma. Exp Oncol 2015;37:111-5.

117. McEvoy JD, Dyer MA. Genetic and Epigenetic Discoveries in Human Retinoblastoma. Crit Rev Oncog 2015;20:217-25.

118. Kang MH, Reynolds CP, Kolb EA, Gorlick R, Carol H, et al. Initial Testing (Stage 1) of MK-8242-A Novel MDM2 Inhibitor-by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2016;63:1744-52.

119. Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol 2017;10:133.

120. Zhou M, Gu L, Abshire TC, Homans A, Billett AL, et al. Incidence and prognostic significance of MDM2 oncoprotein overexpression in relapsed childhood acute lymphoblastic leukemia. Leukemia 2000;14:61-7.

121. Gamble LD, Kees UR, Tweddle DA, Lunec J. MYCN sensitizes neuroblastoma to the MDM2-p53 antagonists Nutlin-3 and MI-63. Oncogene 2012;31:752-63.

122. Cole KA, Huggins J, Laquaglia M, Hulderman CE, Russell MR, et al. RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci U S A 2011;108:3336-41.

123. Hoglund A, Nilsson LM, Muralidharan SV, Hasvold LA, Merta P, et al. Therapeutic implications for the induced levels of Chk1 in Myc-expressing cancer cells. Clin Cancer Res 2011;17:7067-79.

124. Hattinger CM, Michelacci F, Sella F, Magagnoli G, Benini S, et al. Excision repair cross-complementation group 1 protein expression predicts survival in patients with high-grade, non-metastatic osteosarcoma treated with neoadjuvant chemotherapy. Histopathology 2015;67:338-47.

125. Lowery CD, VanWye AB, Dowless M, Blosser W, Falcon BL, et al. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma. Clin Cancer Res 2017;23:4354-63.

126. Zhang Q, Lv LY, Li BJ, Zhang J, Wei F. Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma. Genet Mol Res 2015;14:11235-41.

127. Chen Z, Wang L, Yao D, Yang T, Cao WM, et al. Wip1 inhibitor GSK2830371 inhibits neuroblastoma growth by inducing Chk2/p53-mediated apoptosis. Sci Rep 2016;6:38011.

128. Sarmento LM, Povoa V, Nascimento R, Real G, Antunes I, et al. CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene 2015;34:2978-90.

129. Duan Y, Dong X, Nie J, Li P, Lu F, et al. Wee1 kinase inhibitor MK-1775 induces apoptosis of acute lymphoblastic leukemia cells and enhances the efficacy of doxorubicin involving downregulation of Notch pathway. Oncol Lett 2018;16:5473-81.

130. Matheson CJ, Venkataraman S, Amani V, Harris PS, Backos DS, et al. A WEE1 Inhibitor Analog of AZD1775 Maintains Synergy with Cisplatin and Demonstrates Reduced Single-Agent Cytotoxicity in Medulloblastoma Cells. ACS Chem Biol 2016;11:921-30.

131. Mueller S, Hashizume R, Yang X, Kolkowitz I, Olow AK, et al. Targeting Wee1 for the treatment of pediatric high-grade gliomas. Neuro Oncol 2014;16:352-60.

132. Sanmartin E, Munoz L, Piqueras M, Sirerol JA, Berlanga P, et al. Deletion of 11q in Neuroblastomas Drives Sensitivity to PARP Inhibition. Clin Cancer Res 2017;23:6875-87.

135. Tsai WC, Hueng DY, Lin CR, Yang TC, Gao HW. Nrf2 Expressions Correlate with WHO Grades in Gliomas and Meningiomas. Int J Mol Sci 2016;17:E722.

136. Park JY, Kim YW, Park YK. Nrf2 expression is associated with poor outcome in osteosarcoma. Pathology 2012;44:617-21.

137. Zhang J, Wang X, Wu W, Dang H, Wang B. Expression of the Nrf2 and Keap1 proteins and their clinical significance in osteosarcoma. Biochem Biophys Res Commun 2016;473:42-6.

138. Bortolozzi R, Bresolin S, Rampazzo E, Paganin M, Maule F, et al. AKR1C enzymes sustain therapy resistance in paediatric T-ALL. Br J Cancer 2018;118:985-94.

139. Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, et al. CXCR4 Promotes Neuroblastoma Growth and Therapeutic Resistance through miR-15a/16-1-Mediated ERK and BCL2/Cyclin D1 Pathways. Cancer Res 2018;78:1471-83.

140. Laetsch TW, Liu X, Vu A, Sliozberg M, Vido M, et al. Multiple components of the spliceosome regulate Mcl1 activity in neuroblastoma. Cell Death Dis 2014;5:e1072.

141. Aries IM, Bodaar K, Karim SA, Chonghaile TN, Hinze L, et al. PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia. J Exp Med 2018;215:3094-114.

142. Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, et al. Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell 2016;29:159-72.

143. Jubierre L, Soriano A, Planells-Ferrer L, Paris-Coderch L, Tenbaum SP, et al. BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene 2016;35:5179-90.

144. Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, et al. Mcl1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule Bcl2-family antagonists. Cancer Biol Ther 2009;8:1587-95.

145. Avgeris M, Stamati L, Kontos CK, Piatopoulou D, Marmarinos A, et al. BCL2L12 improves risk stratification and prediction of BFM-chemotherapy response in childhood acute lymphoblastic leukemia. Clin Chem Lab Med 2018;56:2104-18.

146. Jing D, Bhadr VA, Beck D, Thoms JA, Yakob NA, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood 2015;125:273-83.

147. Tahir IM, Iqbal T, Jamil A, Saqib M. Association of BCL-2 with oxidative stress and total antioxidant status in pediatric acute lymphoblastic leukemia. J Biol Regul Homeost Agents 2017;31:1023-27.

148. Pedersen MO, Gang AO, Brown P, Pedersen M, Knudsen H, et al. Real world data on young patients with high-risk diffuse large B-cell lymphoma treated with R-CHOP or R-CHOEP - MYC, BCL2 and BCL6 as prognostic biomarkers. PLoS One 2017;12:e0186983.

149. Prutsch N, Gurnhofer E, Suske T, Liang HC, Schlederer M, et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia 2019;33:696-709.

150. Karpel-Massler G, Ishida CT, Bianchetti E, Zhang Y, Shu C, et al. Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat Commun 2017;8:1067.

151. Das P, Puri T, Suri V, Sharma MC, Sharma BS, et al. Medulloblastomas: a correlative study of MIB-1 proliferation index along with expression of c-Myc, ERBB2, and anti-apoptotic proteins along with histological typing and clinical outcome. Childs Nerv Syst 2009;25:825-35.

152. McLendon RE, Friedman HS, Fuchs HE, Kun LE, Bigner SH. Diagnostic markers in paediatric medulloblastoma: a Paediatric Oncology Group Study. Histopathology 1999;34:154-62.

153. Thallinger C, Wolschek MF, Maierhofer H, Skvara H, Pehamberger H, et al. Mcl-1 is a novel therapeutic target for human sarcoma: synergistic inhibition of human sarcoma xenotransplants by a combination of mcl-1 antisense oligonucleotides with low-dose cyclophosphamide. Clin Cancer Res 2004;10:4185-91.

154. Krskova L, Kalinova M, Brizova H, Mrhalova M, Sumerauer D, et al. Molecular and immunohistochemical analyses of BCL2, KI-67, and cyclin D1 expression in synovial sarcoma. Cancer Genet Cytogenet 2009;193:1-8.

155. Haydn T, Metzger E, Schuele R, Fulda S. Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell Death Dis 2017;8:e2879.

156. Javaheri T, Kazemi Z, Pencik J, Pham HT, Kauer M, et al. Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation. Cell Death Dis 2016;7:e2419.

157. Sanchez R, St-Cyr J, Lalonde ME, Healy J, Richer C, et al. Impact of promoter polymorphisms in key regulators of the intrinsic apoptosis pathway on the outcome of childhood acute lymphoblastic leukemia. Haematologica 2014;99:314-21.

158. Marston E, Weston V, Jesson J, Maina E, McConville C, et al. Stratification of pediatric ALL by in vitro cellular responses to DNA double-strand breaks provides insight into the molecular mechanisms underlying clinical response. Blood 2009;113:117-26.

159. Holleman A, den Boer ML, Kazemier KM, Beverloo HB, von Bergh AR, et al. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia. Blood 2005;106:1817-23.

160. Grotzer MA, Eggert A, Zuzak TJ, Janss AJ, Marwaha S, et al. Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 2000;19:4604-10.

161. Teitz T, Lahti JM, Kidd VJ. Aggressive childhood neuroblastomas do not express caspase-8: an important component of programmed cell death. J Mol Med (Berl) 2001;79:428-36.

162. Dukers DF, Meijer CJ, ten Berge RL, Vos W, Ossenkoppele GJ, et al. High numbers of active caspase 3-positive Reed-Sternberg cells in pretreatment biopsy specimens of patients with Hodgkin disease predict favorable clinical outcome. Blood 2002;100:36-42.

163. Pingoud-Meier C, Lang D, Janss AJ, Rorke LB, Phillips PC, et al. Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res 2003;9:6401-09.

164. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov 2016;6:1106-17.

165. Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, et al. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med 2019;380:2095-103.

166. Coutre S, Choi M, Furman RR, Eradat H, Heffner L, et al. Venetoclax for patients with chronic lymphocytic leukemia who progressed during or after idelalisib therapy. Blood 2018;131:1704-11.

167. Place AE, Goldsmith K, Bourquin JP, Loh ML, Gore L, et al. Accelerating drug development in pediatric cancer: a novel Phase I study design of venetoclax in relapsed/refractory malignancies. Future Oncol 2018;14:2115-29.

168. Huether R, Dong L, Chen X, Wu G, Parker M, et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun 2014;5:3630.

169. McKenna ES, Roberts CW. Epigenetics and cancer without genomic instability. Cell Cycle 2009;8:23-6.

170. Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med 1993;329:909-14.

171. Peterson JF, Baughn LB, Pearce KE, Williamson CM, Benevides Demasi JC, et al. KMT2A (MLL) rearrangements observed in pediatric/young adult T-lymphoblastic leukemia/lymphoma: A 10-year review from a single cytogenetic laboratory. Genes Chromosomes Cancer 2018;57:541-6.

172. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011;20:66-78.

173. Li Z, Takenobu H, Setyawati AN, Akita N, Haruta M, et al. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications. Oncogene 2018;37:2714-27.

174. Chen L, Alexe G, Dharia NV, Ross L, Iniguez AB, et al. CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 2018;128:446-62.

175. Wang C, Liu Z, Woo CW, Li Z, Wang L, et al. EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 2012;72:315-24.

176. Feng Z, Yao Y, Zhou C, Chen F, Wu F, et al. Pharmacological inhibition of LSD1 for the treatment of MLL-rearranged leukemia. J Hematol Oncol 2016;9:24.

177. Bennani-Baiti IM, Machado I, Llombart-Bosch A, Kovar H. Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum Pathol 2012;43:1300-7.

178. Sankar S, Theisen ER, Bearss J, Mulvihill T, Hoffman LM, et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res 2014;20:4584-97.

179. Gao C, Zhang RD, Liu SG, Zhao XX, Cui L, et al. Low CREBBP expression is associated with adverse long-term outcomes in paediatric acute lymphoblastic leukaemia. Eur J Haematol 2017;99:150-9.

180. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012;488:43-8.

181. Viaene AN, Santi M, Rosenbaum J, Li MM, Surrey LF, et al. SETD2 mutations in primary central nervous system tumors. Acta Neuropathol Commun 2018;6:123.

182. Zhu X, He F, Zeng H, Ling S, Chen A, et al. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet 2014;46:287-93.

183. Olar A, Tran D, Mehta VP, Reinhardt A, Manekia JH, et al. ATRX protein loss and deregulation of PI3K/AKT pathway is frequent in pilocytic astrocytoma with anaplastic features. Clin Neuropathol 2019;38:59-73.

184. Cheung NK, Zhang J, Lu C, Parker M, Bahrami A, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 2012;307:1062-71.

185. Pages M, Beccaria K, Boddaert N, Saffroy R, Besnard A, et al. Co-occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma. Brain Pathol 2018;28:103-11.

186. Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, et al. H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 2013;139:345-9.

187. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012;482:226-31.

188. Lucio-Eterovic AK, Cortez MA, Valera ET, Motta FJ, Queiroz RG, et al. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 2008;8:243.

189. Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 2009;15:91-9.

190. Wittenburg LA, Ptitsyn AA, Thamm D. A systems biology approach to identify molecular pathways altered by HDAC inhibition in osteosarcoma. J Cell Biochem 2012;113:773-83.

191. Warrell RP, Jr, He LZ, Richon V, Calleja E, Pandolfi P. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998;90:1621-5.

192. Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 2012;119:5201-10.

193. Shukla N, Wetmore C, O’Brien MM, Silverman LB, Brown P, et al. Final Report of Phase 1 Study of the DOT1L Inhibitor, Pinometostat (EPZ-5676), in Children with Relapsed or Refractory MLL-r Acute Leukemia. Blood 2016;128:2780.

194. Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol 2010;28:3623-9.

195. Witt O, Milde T, Deubzer HE, Oehme I, Witt R, et al. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma or leukemia. Klin Padiatr 2012;224:398-403.

196. Muscal JA, Thompson PA, Horton TM, Ingle AM, Ahern CH, et al. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatr Blood Cancer 2013;60:390-5.

197. Hummel TR, Wagner L, Ahern C, Fouladi M, Reid JM, et al. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children’s Oncology Group phase 1 consortium study. Pediatr Blood Cancer 2013;60:1452-7.

198. DuBois SG, Groshen S, Park JR, Haas-Kogan DA, Yang X, et al. Phase I Study of Vorinostat as a Radiation Sensitizer with 131I-Metaiodobenzylguanidine (131I-MIBG) for Patients with Relapsed or Refractory Neuroblastoma. Clin Cancer Res 2015;21:2715-21.

201. Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017;7:255.

202. Galardi A, Colletti M, Businaro P, Quintarelli C, Locatelli F, et al. MicroRNAs in Neuroblastoma: Biomarkers with Therapeutic Potential. Curr Med Chem 2018;25:584-600.

203. Kumar V, Kumar V, McGuire T, Coulter DW, Sharp JG, et al. Challenges and Recent Advances in Medulloblastoma Therapy. Trends Pharmacol Sci 2017;38:1061-84.

204. Tarek N, Hayes-Jordan A, Salvador L, McAleer MF, Herzog CE, et al. Recurrent desmoplastic small round cell tumor responding to an mTOR inhibitor containing regimen. Pediatr Blood Cancer 2018;65:1.

205. Becher OJ, Gilheeney SW, Khakoo Y, Lyden DC, Haque S, et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr Blood Cancer 2017;64:7.

206. Vo KT, Karski EE, Nasholm NM, Allen S, Hollinger F, et al. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget 2017;8:23851-61.

207. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010;363:1801-11.

208. Bagatell R, Norris R, Ingle AM, Ahern C, Voss S, et al. Phase 1 trial of temsirolimus in combination with irinotecan and temozolomide in children, adolescents and young adults with relapsed or refractory solid tumors: a Children’s Oncology Group Study. Pediatr Blood Cancer 2014;61:833-9.

209. Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016;534:272-6.

210. Hosoi H, Dilling MB, Liu LN, Danks MK, Shikata T, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 1998;54:815-24.

211. Folgiero V, Miele E, Carai A, Ferretti E, Alfano V, et al. IDO1 involvement in mTOR pathway: a molecular mechanism of resistance to mTOR targeting in medulloblastoma. Oncotarget 2016;7:52900-11.

212. Pelloski CE, Lin E, Zhang L, Yung WK, Colman H, et al. Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res 2006;12:3935-41.

213. Alvarenga AW, Machado LE, Rodrigues BR, Lupinacci FC, Sanemastu P, et al. Evaluation of Akt and RICTOR Expression Levels in Astrocytomas of All Grades. J Histochem Cytochem 2017;65:93-103.

214. King D, Yeomanson D, Bryant H. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J Pediatr Hematol Oncol 2015;37:245-51.

215. Miyahara H, Yadavilli S, Natsumeda M, Rubens JA, Rodgers L, et al. The dual mTOR kinase inhibitor TAK228 inhibits tumorigenicity and enhances radiosensitization in diffuse intrinsic pontine glioma. Cancer Lett 2017;400:110-6.

216. Flannery PC, DeSisto JA, Amani V, Venkataraman S, Lemma RT, et al. Preclinical analysis of MTOR complex 1/2 inhibition in diffuse intrinsic pontine glioma. Oncol Rep 2018;39:455-64.

217. Akgul S, Li Y, Zheng S, Kool M, Treisman DM, et al. Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. Cell Rep 2018;24:463-78.

218. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002;99:1928-37.

219. Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 2014;28:1467-71.

220. Rutkowski P, Magnan H, Chou AJ, Benson C. Treatment of gastrointestinal stromal tumours in paediatric and young adult patients with sunitinib: a multicentre case series. BMC Cancer 2017;17:717.

221. Wedekind MF, Ranalli M, Shah N. Clinical efficacy of cabozantinib in two pediatric patients with recurrent renal cell carcinoma. Pediatr Blood Cancer 2017;64:11.

222. Truffaux N, Philippe C, Paulsson J, Andreiuolo F, Guerrini-Rousseau L, et al. Preclinical evaluation of dasatinib alone and in combination with cabozantinib for the treatment of diffuse intrinsic pontine glioma. Neuro Oncol 2015;17:953-64.

223. Glade Bender JL, Lee A, Reid JM, Baruchel S, Roberts T, et al. Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children’s oncology group phase I consortium report. J Clin Oncol 2013;31:3034-43.

224. Yang K, Fu L. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: A review. Crit Rev Oncol Hematol 2015;93:277-92.

225. Aoe M, Shimada A, Muraoka M, Washio K, Nakamura Y, et al. ABL kinase mutation and relapse in 4 pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia cases. Int J Hematol 2014;99:609-15.

226. Zwaan CM, Rizzari C, Mechinaud F, Lancaster DL, Lehrnbecher T, et al. Dasatinib in children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the Innovative Therapies for Children with Cancer Consortium. J Clin Oncol 2013;31:2460-8.

227. Bresler SC, Weiser DA, Huwe PJ, Park JH, Krytska K, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 2014;26:682-94.

228. Tucker ER, Danielson LS, Innocenti P, Chesler L. Tackling Crizotinib Resistance: The Pathway from Drug Discovery to the Pediatric Clinic. Cancer Res 2015;75:2770-4.

229. Sabnis AJ, Bivona T. Principles of Resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends Mol Med 2019;25:185-97.

230. Cooper J, Giancotti F. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019;35:347-67.

231. Marona P, Gorka J, Kotlinowski J, Majka M, Jura J, et al. C-Met as a Key Factor Responsible for Sustaining Undifferentiated Phenotype and Therapy Resistance in Renal Carcinomas. Cells 2019;8:E272.

232. Harivenkatesh N, Kumar L, Bakhshi S, Sharma A, Kabra M, et al. Influence of MDR1 and CYP3A5 genetic polymorphisms on trough levels and therapeutic response of imatinib in newly diagnosed patients with chronic myeloid leukemia. Pharmacol Res 2017;120:138-45.

233. Brown LM, Hanna DT, Khaw SL, Ekert P. Dysregulation of BCL-2 family proteins by leukemia fusion genes. J Biol Chem 2017;292:14325-33.

234. Morgillo F, Della Corte CM, Fasano M, Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 2016;1:e000060.

235. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010;363:1324-34.

236. Shusterman S, London WB, Gillies SD, Hank JA, Voss SD, et al. 18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol 2010;28:4969-75.

237. Cheung NK, Cheung IY, Kushner BH, Ostrovnaya I, Chamberlain E, et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol 2012;30:3264-70.

238. Mody R, Naranjo A, Van Ryn C, Yu AL, London WB, et al. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncol 17;18:946-57.

239. Goldman S, Smith L, Galardy P, Perkins SL, Frazer JK, et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: a Children’s Oncology Group Report. Br J Haematol 2014;167:394-401.

240. Meinhardt A, Burkhardt B, Zimmermann M, Borkhardt A, Kontny U, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol 2010;28:3115-21.

241. Locatelli F, Mauz-Koerholz C, Neville K, Llort A, Beishuizen A, et al. Brentuximab vedotin for paediatric relapsed or refractory Hodgkin’s lymphoma and anaplastic large-cell lymphoma: a multicentre, open-label, phase 1/2 study. Lancet Haematol 18;5:450-61.

242. Anderson PM, Bielack SS, Gorlick RG, Skubitz K, Daw NC, et al. A phase II study of clinical activity of SCH 717454 (robatumumab) in patients with relapsed osteosarcoma and Ewing sarcoma. Pediatr Blood Cancer 2016;63:1761-70.

243. Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PC, et al. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a Sarcoma Alliance for Research Through Collaboration study. Cancer 2014;120:2448-56.

244. Peters KB, Lipp ES, Miller E, Herndon JE 2nd, McSherry F, et al. Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas. J Neurooncol 2018;137:349-56.

245. Navid F, Santana VM, Neel M, McCarville MB, Shulkin BL, et al. A phase II trial evaluating the feasibility of adding bevacizumab to standard osteosarcoma therapy. Int J Cancer 2017;141:1469-77.

246. DeWire M, Fouladi M, Turner DC, Wetmore C, Hawkins C, et al. An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). J Neurooncol 2015;123:85-91.

247. Hiraga J, Tomita A, Sugimoto T, Shimada K, Ito M, et al. Down-regulation of CD20 expression in B-cell lymphoma cells after treatment with rituximab-containing combination chemotherapies: its prevalence and clinical significance. Blood 2009;113:4885-93.

248. Al-Rohil RN, Torres-Cabala CA, Patel A, Tetzlaff MT, Ivan D, et al. Loss of CD30 expression after treatment with brentuximab vedotin in a patient with anaplastic large cell lymphoma: a novel finding. J Cutan Pathol 2016;43:1161-6.

249. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509-18.

250. Ozkaynak MF, Sondel PM, Krailo MD, Gan J, Javorsky B, et al. 18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma immediately after hematopoietic stem-cell transplantation: a Children’s Cancer Group Study. J Clin Oncol 2000;18:4077-85.

251. Desai AV, Fox E, Smith LM, Lim AP, Maris JM, et al. Pharmacokinetics of the chimeric anti-GD2 antibody, ch14. Cancer Chemother Pharmacol 2014;74:1047-55.

252. Cheung IY, Kushner BH, Modak S, Basu EM, Roberts SS, et al. Phase I trial of anti-GD2 monoclonal antibody hu3F8 plus GM-CSF: Impact of body weight, immunogenicity and anti-GD2 response on pharmacokinetics and survival. Oncoimmunology 2017;6:1358331.

253. van der Sluis IM, de Groot-Kruseman H, Te Loo M, Tissing WJE, van den Bos C, et al. coli asparaginase in children with previously untreated acute lymphoblastic leukemia: A randomized multicenter study of the Dutch Childhood Oncology Group. Pediatr Blood Cancer 2018;65:27083.

254. Paillassa J, Leguay T, Thomas X, Huguet F, Audrain M, et al. Monitoring of asparagine depletion and anti-L-asparaginase antibodies in adult acute lymphoblastic leukemia treated in the pediatric-inspired GRAALL-2005 trial. Blood Cancer J 2018;8:45.

255. Tram Henriksen L, Gottschalk Hojfeldt S, Schmiegelow K, Frandsen TL, Skov Wehner P, et al. Prolonged first-line PEG-asparaginase treatment in pediatric acute lymphoblastic leukemia in the NOPHO ALL2008 protocol-Pharmacokinetics and antibody formation. Pediatr Blood Cancer 2017;64:12.

256. Schleiermacher G, Javanmardi N, Bernard V, Leroy Q, Cappo J, et al. Emergence of new ALK mutations at relapse of neuroblastoma. J Clin Oncol 2014;32:2727-34.

257. Bellini A, Bernard V, Leroy Q, Rio Frio T, Pierron G, et al. Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res 2015;21:4913-21.

258. Chen L, Humphreys A, Turnbull L, Bellini A, Schleiermacher G, et al. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse. Oncotarget 2016;7:87301-11.

259. Mehrazma M, Madjd Z, Kalantari E, Panahi M, Hendi A, et al. Expression of stem cell markers, CD133 and CD44, in pediatric solid tumors: a study using tissue microarray. Fetal Pediatr Pathol 2013;32:192-204.

260. Choi SA, Wang KC, Phi JH, Lee JY, Park CK, et al. A distinct subpopulation within CD133 positive brain tumor cells shares characteristics with endothelial progenitor cells. Cancer Lett 2012;324:221-30.

261. Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, et al. CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 2005;23:1142-53.

262. Sartelet H, Imbriglio T, Nyalendo C, Haddad E, Annabi B, et al. CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway. Histopathology 2012;60:1144-55.

263. Bahnassy AA, Fawzy M, El-Wakil M, Zekri AR, Abdel-Sayed A, et al. Aberrant expression of cancer stem cell markers (CD44, CD90, and CD133) contributes to disease progression and reduced survival in hepatoblastoma patients: 4-year survival data. Transl Res 2015;165:396-406.

264. Friedman GK, Moore BP, Nan L, Kelly VM, Etminan T, et al. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol 2016;18:227-35.

265. Zambo I, Hermanova M, Zapletalova D, Skoda J, Mudry P, et al. Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. Cancer Biomark 2016;17:107-16.

266. O’Hagan-Wong K, Nadeau S, Carrier-Leclerc A, Apablaza F, Hamdy R, et al. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells’ homeostasis. Oncotarget 2016;7:13285-96.

267. Zhang LJ, Liu W, Gao YM, Qin YJ, Wu R. The expression of IL-6 and STAT3 might predict progression and unfavorable prognosis in Wilms’ tumor. Biochem Biophys Res Commun 2013;435:408-13.

268. Bid HK, Roberts RD, Cam M, Audino A, Kurmasheva RT, et al. DeltaNp63 promotes pediatric neuroblastoma and osteosarcoma by regulating tumor angiogenesis. Cancer Res 2014;74:320-9.

269. Gross AC, Cam H, Phelps DA, Saraf AJ, Bid HK, et al. IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to metastasis. JCI Insight 2018;3:99791.

270. Samuel P, Fabbri M, Carter D. Mechanisms of Drug Resistance in Cancer: The Role of Extracellular Vesicles. Proteomics 2017;17:23-4.

271. Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, et al. ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model. Mol Cancer Ther 2016;15:819-29.

272. Ingram WJ, Crowther LM, Little EB, Freeman R, Harliwong I, et al. ABC transporter activity linked to radiation resistance and molecular subtype in pediatric medulloblastoma. Exp Hematol Oncol 2013;2:26.

273. Asgharzadeh S, Salo JA, Ji L, Oberthuer A, Fischer M, et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 2012;30:3525-32.

274. Majzner RG, Simon JS, Grosso JF, Martinez D, Pawel BR, et al. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues. Cancer 2017;123:3807-15.

275. Fujiwara T, Fukushi J, Yamamoto S, Matsumoto Y, Setsu N, et al. Macrophage infiltration predicts a poor prognosis for human ewing sarcoma. Am J Pathol 2011;179:1157-70.

276. Alanee S, Shah S, Vijai J, Schrader K, Hamilton R, et al. Prevalence of HOXB13 mutation in a population of Ashkenazi Jewish men treated for prostate cancer. Fam Cancer 2013;12:597-600.

277. Li X, Li D, Huang X, Zhou P, Shi Q, et al. Helios expression in regulatory T cells promotes immunosuppression, angiogenesis and the growth of leukemia cells in pediatric acute lymphoblastic leukemia. Leuk Res 2018;67:60-6.

278. Rigo V, Emionite L, Daga A, Astigiano S, Corrias MV, et al. Combined immunotherapy with anti-PDL-1/PD-1 and anti-CD4 antibodies cures syngeneic disseminated neuroblastoma. Sci Rep 2017;7:14049.

279. Parsons E, Otieno JA, Ong’echa JM, Nixon CE, Vulule J, et al. Regulatory T Cells in Endemic Burkitt Lymphoma Patients Are Associated with Poor Outcomes: A Prospective, Longitudinal Study. PLoS One 2016;11:e0167841.

280. Mao Y, Eissler N, Blanc KL, Johnsen JI, Kogner P, et al. Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clin Cancer Res 2016;22:3849-59.

281. Salem ML, El-Shanshory MR, Abdou SH, Attia MS, Sobhy SM, et al. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia. Immunopharmacol Immunotoxicol 2018;40:158-67.

282. Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, et al. Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer Immunol Res 2016;4:869-80.

283. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 2007;49:928-40.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/