REFERENCES
1. Adamson PC, Poplack DG, Balis FM. The cytotoxicity of thioguanine vs mercaptopurine in acute lymphoblastic leukemia. Leuk Res 1994;18:805-10.
2. Lucafò M, Franca R, Selvestrel D, Curci D, Pugnetti L, et al. Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opin Drug Metab Toxicol 2018;14:1209-23.
3. Cara CJ, Pena AS, Sans M, Rodrigo L, Guerrero-Esteo M, et al. Reviewing the mechanism of action of thiopurine drugs: towards a new paradigm in clinical practice. Med Sci Monit 2004;10:RA247-54.
4. Berends SE, Strik AS, Löwenberg M, D’Haens GR, Mathôt RAA. Clinical pharmacokinetic and pharmacodynamic considerations in the treatment of ulcerative colitis. Clin Pharmacokinet 2019;58:15-37.
5. Krenitsky TA, Papaioannou R, Elion GB. Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J Biol Chem 1969;244:1263-70.
6. Adam de Beaumais T, Fakhoury M, Medard Y, Azougagh S, Zhang D, et al. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol 2011;71:575-84.
7. Nguyen CM, Mendes MA, Ma JD. Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk. PLoS Curr 2011;3:RRN1236.
8. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000;118:705-13.
9. Ben-Horin S, Van Assche G, Chowers Y, Fudim E, Ungar B, et al. Pharmacokinetics and immune reconstitution following discontinuation of thiopurine analogues: implications for drug withdrawal strategies. J Crohns Colitis 2018;12:1410-7.
10. Derijks LJ, Gilissen LP, Engels LG, Bos LP, Bus PJ, et al. Pharmacokinetics of 6-mercaptopurine in patients with inflammatory bowel disease: implications for therapy. Ther Drug Monit 2004;26:311-8.
11. Lancaster DL, Patel N, Lennard L, Lilleyman JS. Leucocyte versus erythrocyte thioguanine nucleotide concentrations in children taking thiopurines for acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 2002;50:33-6.
12. Cuffari C, Seidman EG, Latour S, Théorêt Y. Quantitation of 6-thioguanine in peripheral blood leukocyte DNA in Crohn’s disease patients on maintenance 6-mercaptopurine therapy. Can J Physiol Pharmacol 1996;74:580-5.
13. Stocco G, Franca R, Verzegnassi F, Londero M, Rabusin M, et al. Pharmacogenomic approaches for tailored anti-leukemic therapy in children. Curr Med Chem 2013;20:2237-53.
14. Franca R, Kuzelicki NK, Sorio C, Toffoletti E, Montecchini O, et al. Targeting kinase-activating genetic lesions to improve therapy of pediatric acute lymphoblastic leukemia. Curr Med Chem 2018;25:2811-25.
15. Ling Y, Xie Q, Zhang Z, Zhang H. Protein kinase inhibitors for acute leukemia. Biomark Res 2018;6:8.
16. Avallone EV, Pica R, Cassieri C, Zippi M, Paoluzi P, et al. Azathioprine treatment in inflammatory bowel disease patients: type and time of onset of side effects. Eur Rev Med Pharmacol Sci 2014;18:165-70.
17. Ledder O, Lemberg DA, Day AS. Thiopurine-induced pancreatitis in inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2015;9:399-403.
18. Citterio-Quentin A, El Mahmoudi A, Perret T, Conway A, Ryan A, et al. Red Blood cell IMPDH activity in adults and children with or without azathioprine: relationship between thiopurine metabolites, ITPA and TPMT activities. Basic Clin Pharmacol Toxicol 2018.
19. Urbančič D, Kotar A, Šmid A, Jukič M, Gobec S, et al. Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochim Biophys Acta Gen Subj 2019;1863:182-90.
20. Schwarz G, Csaszar J, Schaeffeler E, Schwab, M. Diagnostic in vitro method, 2013 [Application number: US20160160264A1]. Available from: https://patents.google.com/patent/US20160160264A1/en. [Last accessed on 15 Apr 2019].
21. Collie-Duguid ES, Pritchard SC, Powrie RH, Sludden J, Collier DA, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999;9:37-42.
22. Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 2004;14:407-17.
23. Liu C, Yang W, Pei D, Cheng C, Smith C, et al. Genomewide approach validates thiopurine methyltransferase activity is a monogenic pharmacogenomic trait. Clin Pharmacol Ther 2017;101:373-81.
24. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, et al. CD28-dependent Rac-1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 2003;111:1133-45.
25. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997;126:608-14.
26. Hindorf U, Appell ML. Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function. J Crohns Colitis 2012;6:655-9.
27. Chadli Z, Kerkeni E, Hannachi I, Chouchene S, Ben Fredj N, et al. Distribution of genetic polymorphisms of genes implicated in thiopurine drugs metabolism. Ther Drug Monit 2018;40:655-9.
28. Saiz-Rodríguez M, Ochoa D, Belmonte C, Román M, Martínez-Ingelmo C, et al. Influence of thiopurine S-methyltransferase polymorphisms in mercaptopurine pharmacokinetics in healthy volunteers. Basic Clin Pharmacol Toxicol 2019;124:449-55.
29. Oliveira E, Quental S, Alves S, Amorim A, Prata MJ. Do the distribution patterns of polymorphisms at the thiopurine S-methyltransferase locus in sub-Saharan populations need revision? Hints from Cabinda and Mozambique. Eur J Clin Pharmacol 2007;63:703-6.
30. Tai HL, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 1997;94:6444-9.
31. Wang L, Sullivan W, Toft D, Weinshilboum R. Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics 2003;13:555-64.
32. Wang L, Nguyen TV, McLaughlin RW, Sikkink LA, Ramirez-Alvarado M, et al. Human thiopurine S-methyltransferase pharmacogenetics: variant allozyme misfolding and aggresome formation. Proc Natl Acad Sci U S A 2005;102:9394-9.
33. Coenen MJ, de Jong DJ, van Marrewijk CJ, Derijks LJ, Vermeulen SH, et al. Identification of patients with variants in tpmt and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology 2015;149:907-17.e7.
34. Hartford C, Vasquez E, Schwab M, Edick MJ, Rehg JE, et al. Differential effects of targeted disruption of thiopurine methyltransferase on mercaptopurine and thioguanine pharmacodynamics. Cancer Res 2007;67:4965-72.
35. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 2011;89:387-91.
36. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther 2018.
37. Meijer B, Kreijne JE, van Moorsel SAW, Derijks LJJ, Bouma G, et al. 6-methylmercaptopurine-induced leukocytopenia during thiopurine therapy in inflammatory bowel disease patients. J Gastroenterol Hepatol 2017;32:1183-90.
38. Yang SK, Hong M, Baek J, Choi H, Zhao W, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 2014;46:1017-20.
39. Yang JJ, Whirl-Carrillo M, Scott SA, Turner AJ, Schwab M, et al. Pharmacogene variation consortium gene introduction: NUDT15. Clin Pharmacol Ther 2018.
40. Kakuta Y, Kinouchi Y, Shimosegawa T. Pharmacogenetics of thiopurines for inflammatory bowel disease in East Asia: prospects for clinical application of NUDT15 genotyping. J Gastroenterol 2018;53:172-80.
41. Yang JJ, Landier W, Yang W, Liu C, Hageman L, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 2015;33:1235-42.
42. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 2016;48:367-73.
43. Yin D, Xia X, Zhang J, Zhang S, Liao F, et al. Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose. Oncotarget 2017;8:13575-85.
44. Cargnin S, Genazzani AA, Canonico PL, Terrazzino S. Diagnostic accuracy of NUDT15 gene variants for thiopurine-induced leukopenia: a systematic review and meta-analysis. Pharmacol Res 2018;135:102-11.
45. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-91.
46. Walker G, Harrison J, Voskuil M, Heap G, Heerasing N. NUDT15 variants contribute to thiopurine-induced myelosuppression in European populations. 2018. Available from: https://www.ecco-ibd.eu/publications/congress-abstract-s/abstracts-2018/item/op035-nudt15-variants-contribute-to-thiopurine-induced-myelosuppression-in-european-populations.html. [Last accessed on 15 Apr 2019].
47. Moriyama T, Nishii R, Lin TN, Kihira K, Toyoda H, et al. The effects of inherited NUDT15 polymorphisms on thiopurine active metabolites in Japanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics 2017;27:236-9.
48. Lin S, McLennan AG, Ying K, Wang Z, Gu S, et al. Cloning, expression, and characterization of a human inosine triphosphate pyrophosphatase encoded by the itpa gene. J Biol Chem 2001;276:18695-701.
49. Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci 2016;23:73.
50. Sumi S, Marinaki AM, Arenas M, Fairbanks L, Shobowale-Bakre M, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet 2002;111:360-7.
51. Behmanesh M, Sakumi K, Abolhassani N, Toyokuni S, Oka S, et al. ITPase-deficient mice show growth retardation and die before weaning. Cell Death Differ 2009;16:1315-22.
52. Vanderheiden BS. Possible implication of an inosinetriphosphate metabolic error and glutamic acid decarboxylase in paranoid schizophrenia. Biochem Med 1979;21:22-32.
53. Nakauchi A, Wong JH, Mahasirimongkol S, Yanai H, Yuliwulandari R, et al. Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Hum Genome Var 2016;3:15067.
54. Mollaahmadi F, Moini A, Salman Yazdi R, Behmanesh M. The rs1127354 polymorphism in itpa is associated with susceptibility to infertility. Cell J 2018;20:73-7.
55. Stenmark P, Kursula P, Flodin S, Gräslund S, Landry R, et al. Crystal structure of human inosine triphosphatase. Substrate binding and implication of the inosine triphosphatase deficiency mutation P32T. J Biol Chem 2007;282:3182-7.
56. Marsh S, King CR, Ahluwalia R, McLeod HL. Distribution of ITPA P32T alleles in multiple world populations. J Hum Genet 2004;49:579-81.
57. Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shianna KV, et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 2010;464:405-8.
58. Coelho AV, Silva SP, Zandonà L, Stocco G, Decorti G, et al. Role of inosine triphosphate pyrophosphatase gene variant on fever incidence during zidovudine antiretroviral therapy. Genet Mol Res 2017;16.
59. Stocco G, Cheok MH, Crews KR, Dervieux T, French D, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 2009;85:164-72.
60. Kim H, Kang HJ, Kim HJ, Jang MK, Kim NH, et al. Pharmacogenetic analysis of pediatric patients with acute lymphoblastic leukemia: a possible association between survival rate and ITPA polymorphism. PLoS One 2012;7:e45558.
61. Wan Rosalina WR, Teh LK, Mohamad N, Nasir A, Yusoff R, et al. Polymorphism of ITPA 94C>A and risk of adverse effects among patients with acute lymphoblastic leukaemia treated with 6-mercaptopurine. J Clin Pharm Ther 2012;37:237-41.
62. Franca R, Rebora P, Bertorello N, Fagioli F, Conter V, et al. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. Pharmacogenomics J 2017;17:4-10.
63. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M. All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 2000;113:4511-21.
64. Frost A, Unger VM, De Camilli P. The BAR domain superfamily: membrane-molding macromolecules. Cell 2009;137:191-6.
65. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004;303:495-9.
66. Senju Y, Rosenbaum E, Shah C, Hamada-Nakahara S, Itoh Y, et al. Phosphorylation of PACSIN2 by protein kinase C triggers the removal of caveolae from the plasma membrane. J Cell Sci 2015;128:2766-80.
67. de Kreuk BJ, Anthony EC, Geerts D, Hordijk PL. The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization. J Biol Chem 2012;287:43438-53.
68. Hansen CG, Howard G, Nichols BJ. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci 2011;124:2777-85.
69. Ritter B, Modregger J, Paulsson M, Plomann M. PACSIN 2, a novel member of the PACSIN family of cytoplasmic adapter proteins. FEBS Lett 1999;454:356-62.
70. Stocco G, Yang W, Crews KR, Thierfelder WE, Decorti G, et al. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet 2012;21:4793-804.
71. Smid A, Karas-Kuzelicki N, Jazbec J, Mlinaric-Rascan I. PACSIN2 polymorphism is associated with thiopurine-induced hematological toxicity in children with acute lymphoblastic leukaemia undergoing maintenance therapy. Sci Rep 2016;6:30244.
72. Lam BD, Hordijk PL. The Rac-1 hypervariable region in targeting and signaling: a tail of many stories. Small GTPases 2013;4:78-89.
73. Seinen ML, van Nieuw Amerongen GP, de Boer NK, Mulder CJ, van Bezu J, et al. Rac-1 as a potential pharmacodynamic biomarker for thiopurine therapy in inflammatory bowel disease. Ther Drug Monit 2016;38:621-7.
74. Shin JY, Wey M, Umutesi HG, Sun X, Simecka J, et al. Thiopurine prodrugs mediate immunosuppressive effects by interfering with Rac-1 protein function. J Biol Chem 2016;291:13699-714.
75. Sugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, et al. Rac-1 is required for the formation of three germ layers during gastrulation. Oncogene 1998;17:3427-33.
76. Poppe D, Tiede I, Fritz G, Becker C, Bartsch B, et al. Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J Immunol 2006;176:640-51.
77. Muise AM, Walters T, Xu W, Shen-Tu G, Guo CH, et al. Single nucleotide polymorphisms that increase expression of the guanosine triphosphatase Rac-1 are associated with ulcerative colitis. Gastroenterology 2011;141:633-41.
78. Lev-Tzion R, Renbaum P, Beeri R, Ledder O, Mevorach R, et al. Rac-1 polymorphisms and thiopurine efficacy in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2015;61:404-7.
79. Koifman E, Karban A, Mazor Y, Chermesh I, Waterman M, et al. Thiopurine effectiveness in patients with Crohn’s disease: a study of genetic and clinical predictive factors. Inflamm Bowel Dis 2013;19:1639-44.
80. Fisel P, Schaeffeler E, Schwab M. DNA methylation of ADME genes. Clin Pharmacol Ther 2016;99:512-27.
81. De Abreu R, Lambooy L, Stet E, Vogels-Mentink T, Van den Heuvel L. Thiopurine induced disturbance of DNA methylation in human malignant cells. Adv Enzyme Regul 1995;35:251-63.
82. Lambooy LH, Leegwater PA, van den Heuvel LP, Bökkerink JP, De Abreu RA. Inhibition of DNA methylation in malignant MOLT F4 lymphoblasts by 6-mercaptopurine. Clin Chem 1998;44:556-9.
83. Hogarth LA, Redfern CP, Teodoridis JM, Hall AG, Anderson H, et al. The effect of thiopurine drugs on DNA methylation in relation to TPMT expression. Biochem Pharmacol 2008;76:1024-35.
84. Lisanti S, Omar WA, Tomaszewski B, De Prins S, Jacobs G, et al. Comparison of methods for quantification of global DNA methylation in human cells and tissues. PLoS One 2013;8:e79044.
85. Taki K, Fukushima T, Ise R, Horii I, Yoshida T. Microarray analysis of 6-mercaptopurine-induced-toxicity-related genes and microRNAs in the rat placenta. J Toxicol Sci 2013;38:159-67.
86. Burgess KS, Philips S, Benson EA, Desta Z, Gaedigk A, et al. Age-Related Changes in MicroRNA Expression and Pharmacogenes in Human Liver. Clin Pharmacol Ther 2015;98:205-15.
87. Stocco G, Martelossi S, Arrigo S, Barabino A, Aloi M, et al. Multicentric case-control study on azathioprine dose and pharmacokinetics in early-onset pediatric inflammatory bowel disease. Inflamm Bowel Dis 2017;23:628-34.
88. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012;92:414-7.
89. Kornbluth A, Sachar DB, Gastroenterology PPCotACo. Ulcerative colitis practice guidelines in adults: American college of gastroenterology, practice parameters committee. Am J Gastroenterol 2010;105:501-23.
91. Stocco G, Martelossi S, Barabino A, Fontana M, Lionetti P, Decorti G, et al. TPMT genotype and the use of thiopurines in paediatric inflammatory bowel disease. Dig Liver Dis 2005;37:940-5.