REFERENCES

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893-917.

2. Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008;34:193-205.

3. Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, et al. The epidemiology of renal cell carcinoma. Eur Urol 2011;60:615-21.

4. Krabbe L-M, Bagrodia A, Margulis V, Wood CG. Surgical management of renal cell carcinoma. Semin Intervent Radiol 2014;31:27-32.

5. Kalra S, Atkinson BJ, Matrana MR, Matin SF, Wood CG, et al. Prognosis of patients with metastatic renal cell carcinoma and pancreatic metastases. BJU Int 2016;117:761-5.

6. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883-92.

7. Lim SH, Hwang IG, Ji JH, Oh SY, Yi JH, et al. Intrinsic resistance to sunitinib in patients with metastatic renal cell carcinoma. Asia Pac J Clin Oncol 2017;13:61-7.

8. Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 2009;10:992-1000.

9. Busch J, Seidel C, Weikert S, Wolff I, Kempkensteffen C, et al. Intrinsic resistance to tyrosine kinase inhibitors is associated with poor clinical outcome in metastatic renal cell carcinoma. BMC Cancer 2011;11:295.

10. Motzer RJ, Rini BI, Bukowski RM, Curti BD, Gerorge DJ, et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA 2006;295:2516-24.

11. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, et al. Sunitinib versus Interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007;356:115-24.

12. Zarrabi K, Fang C, Wu S. New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy. J Hematol Oncol 2017;10:38.

13. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372:449-56.

14. Voss MH, Molina AM, Motzer RJ. mTOR inhibitors in advanced renal cell carcinoma. Hematol Oncol Clin North Am 2011;25:835-52.

15. Weinstock M, McDermott D. Targeting PD-1/PD-L1 in the treatment of metastatic renal cell carcinoma. Ther Adv Urol 2015;7:365-77.

16. Frei E, Karon M, Levin RH, Freireich EJ, Taylor RJ, et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 1965;26:642-56.

17. Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 2001;62:657-67.

18. Chong CR, Sullivan Jr DJ. New uses for old drugs. Nature 2007;448:645-6.

19. Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015;16:1473-82.

20. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 2007;370:2103-11.

21. Escudier B, Bellmunt J, Négrier S, Bajetta E, Melichar B, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final Analysis of Overall Survival. J Clin Oncol 2010;28:2144-50.

22. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, et al. Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378:1277-90.

23. FDA approves nivolumab plus ipilimumab combination for intermediate or poor-risk advanced renal cell carcinoma. Available from: https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm604685.htm. [Last accessed on 24 Apr 2019].

24. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, et al. IMmotion151: a randomized phase iii study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal cell carcinoma (mRCC). J Clin Oncol 2018;36:578.

25. Lee CH, Makker V, Rasco D, Taylor M, Stepan D, et al. Lenvatinib + pembrolizumab in patients with renal cell carcinoma: updated results. J Clin Oncol 2018;36:4560.

26. Apolo A, Mortazavi A, Stein M, Davarpanah N, Nadal R, et al. A phase I study of cabozantinib plus nivolumab (CaboNivo) and cabonivo plus ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic (m) urothelial carcinoma (UC) and other genitourinary (GU) tumors. J Clin Oncol 2017;35:4562.

27. Nadal R, Mortazavi A, Stein M, Pal S, Davarpanah N, et al. Results of phase I plus expansion cohorts of cabozantinib (Cabo) plus nivolumab (Nivo) and CaboNivo plus ipilimumab (Ipi) in patients (pts) with with metastatic urothelial carcinoma (mUC) and other genitourinary (GU) malignancies. J Clin Oncol 2018;36:515.

28. Escudier B, Barthelemy P, Ravaud A, Negrier S, Needle M, et al. Tivozanib combined with nivolumab: Phase Ib/II study in metastatic renal cell carcinoma (mRCC). J Clin Oncol 2018;36:618.

29. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell 2011;144:646-74.

30. Vander Heiden M, Cantley L, Thompson C. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33.

31. Carr E, Kelman A, Wu G, Gopaul R, Senkevitch E, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010;185:1037-44.

32. Lukey MJ, Wilson KF, Cerione RA. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem 2013;5:1685-700.

33. Ahluwalia GS, Grem JL, Hao Z, Cooney DA. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol Ther 1990;46:243-71.

34. Ovejera A, Houchens D, Catane R, Sheridan M, Muggia F. Efficacy of 6-Diazo-5-oxo-l-norleucine and N-[N-γ-Glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Res 1979;39:3220-4.

35. Mueller C, Al-Batran S, Jaeger E, Schmidt B, Bausch M, et al. A phase IIa study of PEGylated glutaminase (PEG-PGA) plus 6-diazo-5-oxo-L-norleucine (DON) in patients with advanced refractory solid tumors. J Clin Oncol 2008;26:2533.

36. DeLaBarre B, Gross S, Fang C, Gao Y, Jha A, et al. Full-length human glutaminase in complex with an allosteric inhibitor. Biochemistry 2011;50:10764-70.

37. Robinson M, McBryant S, Tsukamoto T, Rojas C, Ferraris D, et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007;406:407-14.

38. Le A, Lane A, Hamaker M, Bose S, Gouw A, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell metabolism 2012;15:110-21.

39. Shukla K, Ferraris DV, Thomas AG, Stathis M, Duvall B, et al. Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. J Med Chem 2012;55:10551-63.

40. Matre P, Velez J, Jacamo R, Qi Y, Su X, et al. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget 2016;7:79722-35.

41. Parlati F, Gross M, Janes J, Lewis E, MacKinnon A, Rodriguez M, et al. Glutaminase Inhibitor CB-839 Synergizes with Pomalidomide in Preclinical Multiple Myeloma Models. Blood 2014;124:4720.

42. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 2014;13:890-901.

43. Lampa M, Arlt H, He T, Ospina B, Reeves J, et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One 2017;12:e0185092.

44. Parlati F. CB-839, a selective glutaminase inhibitor, synergizes with signaling pathway inhibitors to produce an anti-tumor effect in cell lines and tumor xenografts. Available from: https://www.calithera.com/wp-content/uploads/2017/12/AACR-2015-final.pdf. [Last accessed on 24 Apr 2019].

45. Gameiro PA, Yang J, Metelo AM, Perez-Carro R, Baker R, et al. In virto HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metabolism ;17:372-85.

46. Study of the Glutaminase Inhibitor CB-839 in Solid Tumors. Available from: https://clinicaltrials.gov/ct2/show/NCT02071862. [Last accessed on 24 Apr 2019].

47. Harding J, Telli M, Munster P, Le M, Molineaux C, et al. Safety and tolerability of increasing doses of CB-839, a first-in-class, orally administered small molecule inhibitor of glutaminase, in solid tumors. J Clin Oncol 2015;33:2512.

48. Meric-Bernstam F, Tannir N, Mier J, DeMichele A, Telli M, et al. Phase 1 study of CB-839, a small molecule inhibitor of glutaminase (GLS), alone and in combination with everolimus (E) in patients (pts) with renal cell cancer (RCC). J Clin Oncol 2016;34:4568.

49. Guo H, German P, Bai S, Barnes S, Guo W, Qi X, et al. The PI3K/AKT pathway and renal cell carcinoma. J Genet Genomics 2015;42:343-53.

50. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature 2006;442:779.

51. Brodaczewska K, Szczylik C, Fiedorowicz M, Porta C, Czarnecka A. Choosing the right cell line for renal cell cancer research. Mol Cancer 2016;15:83.

52. Tannir N, Fan A, Lee R, Carthon B, Iliopoulos O, et al. Phase 1 study of glutaminase (GLS) inhibitor CB-839 combined with either everolimus (E) or cabozantinib (Cabo) in patients (pts) with clear cell (cc) and papillary (pap) metastatic renal cell cancer (mRCC). J Clin Oncol 2018;36:603.

53. Meric-Bernstam F, Tannir N, Harding J, Voss M, Mier J, DeMichele A, et al. Phase 1 study of CB-839, a small molecule inhibitor of glutaminase, in combination with everolimus in patients (pts) with clear cell and papillary renal cell cancer (RCC). Eur J Cancer 2016;69:S12-S3.

54. Guo L, Zhang H, Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J Cancer 2017;8:410-6.

55. Gross M, Chen J, Englert J, Janes J, Leone R, et al. Abstract 2329: glutaminase inhibition with CB-839 enhances anti-tumor activity of PD-1 and PD-L1 antibodies by overcoming a metabolic checkpoint blocking T cell activation. Cancer Research 2016;76:2329.

56. Study CB-839 in combination with nivolumab in patients with melanoma, ccRCC and NSCLC. Available from: https://clinicaltrials.gov/ct2/show/NCT02771626. [Last accessed on 24 Apr 2019].

57. Emberley E, Bennett M, Chen J, Gross M, Huang T, et al. CB-839, a selective glutaminase inhibitor, has anti-tumor activity in renal cell carcinoma and synergizes with cabozantinib and everolimus. Available from: https://www.calithera.com/wp-content/uploads/2017/12/03.2017-Keystone-poster-Emberley-2017.pdf. [Last accessed on 24 Apr 2019].

58. Tannir N, Motzer R, Agarwal N, Liu P-Y, Whiting S, et al. CANTATA: a randomized phase 2 study of CB-839 in combination with cabozantinib vs. placebo with cabozantinib in patients with advanced/metastatic renal cell carcinoma. J Clin Oncol 2018;36:TPS4601.

59. Halama A, Kulinski M, Dib SS, Zaghlool SB, Siveen KS, et al. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett 2018;430:133-47.

Cancer Drug Resistance
ISSN 2578-532X (Online)

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/