REFERENCES

1. Liu B, Qu J, Zhang W, Izpisua Belmonte JC, Liu GH. A stem cell aging framework, from mechanisms to interventions. Cell Rep. 2022;41:111451.

2. Fuchs E, Blau HM. Tissue stem cells: architects of their niches. Cell Stem Cell. 2020;27:532-56.

3. de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol. 2023;24:334-54.

4. Otsuki L, Brand AH. Quiescent neural stem cells for brain repair and regeneration: lessons from model systems. Trends Neurosci. 2020;43:213-26.

5. Ibrayeva A, Bay M, Pu E, et al. Early stem cell aging in the mature brain. Cell Stem Cell. 2021;28:955-66.e7.

6. Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167:897-914.

7. Hao ZZ, Wei JR, Xiao D, et al. Single-cell transcriptomics of adult macaque hippocampus reveals neural precursor cell populations. Nat Neurosci. 2022;25:805-17.

8. Cope EC, Gould E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell. 2019;24:690-705.

9. Negredo P, Yeo RW, Brunet A. Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell. 2020;27:202-23.

10. Frechou MA, Martin SS, McDermott KD, et al. Adult neurogenesis improves spatial information encoding in the mouse hippocampus. Nat Commun. 2024;15:6410.

11. Li Y, Xu NN, Hao ZZ, Liu S. Adult neurogenesis in the primate hippocampus. Zool Res. 2023;44:315-22.

12. Moreno-Jiménez EP, Terreros-Roncal J, Flor-García M, Rábano A, Llorens-Martín M. Evidences for adult hippocampal neurogenesis in humans. J Neurosci. 2021;41:2541-53.

13. Bragado Alonso S, Reinert JK, Marichal N, et al. An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. EMBO J. 2019;38:e98791.

14. Kalamakis G, Brüne D, Ravichandran S, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 2019;176:1407-19.e14.

15. Ogrodnik M. Cellular aging beyond cellular senescence: markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20:e13338.

16. Beckervordersandforth R, Zhang CL, Lie DC. Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb Perspect Biol. 2015;7:a018879.

17. Gupta B, Errington AC, Jimenez-Pascual A, et al. The transcription factor ZEB1 regulates stem cell self-renewal and cell fate in the adult hippocampus. Cell Rep. 2021;36:109588.

18. Guo N, McDermott KD, Shih YT, et al. Transcriptional regulation of neural stem cell expansion in the adult hippocampus. Elife. 2022;11:e72195.

19. Rasetto NB, Giacomini D, Berardino AA, et al. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. Sci Adv. 2024;10:eadp6039.

20. Urbach A, Witte OW. Divide or commit - revisiting the role of cell cycle regulators in adult hippocampal neurogenesis. Front Cell Dev Biol. 2019;7:55.

21. Niklison-Chirou MV, Agostini M, Amelio I, Melino G. Regulation of adult neurogenesis in mammalian brain. Int J Mol Sci. 2020;21:4869.

22. Luo YJ, Bao H, Crowther A, et al. Sex-specific expression of distinct serotonin receptors mediates stress vulnerability of adult hippocampal neural stem cells in mice. Cell Rep. 2024;43:114140.

23. Kasahara Y, Masukawa D, Kobayashi K, Yamasaki M, Watanabe M, Goshima Y. L-DOPA-induced neurogenesis in the hippocampus is mediated through GPR143, a distinct mechanism of dopamine. Stem Cells. 2022;40:215-26.

24. Li WP, Su XH, Hu NY, et al. Astrocytes mediate cholinergic regulation of adult hippocampal neurogenesis and memory through M1 muscarinic receptor. Biol Psychiatry. 2022;92:984-98.

25. Leschik J, Gentile A, Cicek C, et al. Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Prog Neurobiol. 2022;217:102333.

26. Brooker SM, Gobeske KT, Chen J, Peng CY, Kessler JA. Hippocampal bone morphogenetic protein signaling mediates behavioral effects of antidepressant treatment. Mol Psychiatry. 2017;22:910-9.

27. Kirby ED, Kuwahara AA, Messer RL, Wyss-Coray T. Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc Natl Acad Sci U S A. 2015;112:4128-33.

28. Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol. 2023;14:1202349.

29. Nikolopoulos D, Manolakou T, Polissidis A, et al. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis. 2023;82:646-57.

30. Mao ZF, Ouyang SH, Zhang QY, et al. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: inhibition of CORT-induced microglia activation. FASEB J. 2020;34:10998-1014.

31. Grabrucker S, Marizzoni M, Silajdžić E, et al. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain. 2023;146:4916-34.

32. Leiter O, Zhuo Z, Rust R, et al. Selenium mediates exercise-induced adult neurogenesis and reverses learning deficits induced by hippocampal injury and aging. Cell Metab. 2022;34:408-23.e8.

33. Lei X, Wu Y, Xu M, Jones OD, Ma J, Xu X. Physical exercise: bulking up neurogenesis in human adults. Cell Biosci. 2019;9:74.

34. Grońska-Pęski M, Gonçalves JT, Hébert JM. Enriched environment promotes adult hippocampal neurogenesis through FGFRs. J Neurosci. 2021;41:2899-910.

35. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci. 2017;18:335-46.

36. Li YD, Luo YJ, Chen ZK, et al. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat Neurosci. 2022;25:630-45.

37. Jung S, Choe S, Woo H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2020;16:512-30.

38. Zhang K, Wang F, Zhai M, et al. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics. 2023;13:1059-75.

39. Berger T, Lee H, Young AH, Aarsland D, Thuret S. Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med. 2020;26:803-18.

40. Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer’s disease. Zool Res. 2022;43:481-96.

41. Salmina AB, Kapkaeva MR, Vetchinova AS, Illarioshkin SN. Novel approaches used to examine and control neurogenesis in Parkinson’s disease. Int J Mol Sci. 2021;22:9608.

42. Kozareva DA, Cryan JF, Nolan YM. Born this way: hippocampal neurogenesis across the lifespan. Aging Cell. 2019;18:e13007.

43. White CW 3rd, Fan X, Maynard JC, et al. Age-related loss of neural stem cell O-GlcNAc promotes a glial fate switch through STAT3 activation. Proc Natl Acad Sci U S A. 2020;117:22214-24.

44. Encinas JM, Michurina TV, Peunova N, et al. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell. 2011;8:566-79.

45. Wagner V, Kern F, Hahn O, et al. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat Biotechnol. 2024;42:109-18.

46. Ghafouri-Fard S, Moghadam MHB, Shoorei H, Bahroudi Z, Taheri M, Taheriazam A. The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother. 2021;142:112050.

47. Lu Z, Zhang M, Lee J, et al. Tracking cell-type-specific temporal dynamics in human and mouse brains. Cell. 2023;186:4345-64.e24.

48. Dulken BW, Buckley MT, Navarro Negredo P, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-10.

49. Leeman DS, Hebestreit K, Ruetz T, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-83.

50. Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem cells of the aging brain. Front Aging Neurosci. 2020;12:247.

51. Beckervordersandforth R. Newborn neurons in the aged hippocampus-scarce and slow but highly plastic. Cell Rep. 2017;21:1127-8.

52. Patwardhan AG, Belemkar S. An update on Alzheimer’s disease: immunotherapeutic agents, stem cell therapy and gene editing. Life Sci. 2021;282:119790.

53. Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res. 2024;29:386.

54. Tang X, Deng P, Li L, et al. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther. 2024;15:482.

55. Rodríguez-Pallares J, García-Garrote M, Parga JA, Labandeira-García JL. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen Res. 2023;18:478-84.

56. Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell. 2023;30:512-29.

57. Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med. 2024;30:2756-70.

58. Qiao Y, Agboola OS, Hu X, Wu Y, Lei L. Tumorigenic and immunogenic properties of induced pluripotent stem cells: a promising cancer vaccine. Stem Cell Rev Rep. 2020;16:1049-61.

59. Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics. 2024;21:e00427.

60. Leone MA, Gelati M, Profico DC, et al. Phase I clinical trial of intracerebroventricular transplantation of allogeneic neural stem cells in people with progressive multiple sclerosis. Cell Stem Cell. 2023;30:1597-609.e8.

61. Lamanna JJ, Gutierrez J, Urquia LN, et al. Ferumoxytol labeling of human neural progenitor cells for diagnostic cellular tracking in the porcine spinal cord with magnetic resonance imaging. Stem Cells Transl Med. 2017;6:139-50.

62. Bátiz LF, Castro MA, Burgos PV, et al. Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci. 2015;9:501.

63. Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour A, Yousefi M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol. 2020;235:706-17.

64. Drago D, Cossetti C, Iraci N, et al. The stem cell secretome and its role in brain repair. Biochimie. 2013;95:2271-85.

65. Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv. 2024;21:91-110.

66. Kikuchi T, Morizane A, Doi D, et al. Idiopathic Parkinson’s disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J Neurosci Res. 2017;95:1829-37.

67. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115-30.

68. Alipour M, Nabavi SM, Arab L, et al. Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Mol Biol Rep. 2019;46:1425-46.

69. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397:1577-90.

70. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554-60.

71. Tobin MK, Musaraca K, Disouky A, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 2019;24:974-82.e3.

72. Babcock KR, Page JS, Fallon JR, Webb AE. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports. 2021;16:681-93.

73. Hanspal MA, Gillotin S. A new age in understanding adult hippocampal neurogenesis in Alzheimer’s disease. Neural Regen Res. 2022;17:2615-8.

74. Liu Y, Bilen M, McNicoll MM, et al. Early postnatal defects in neurogenesis in the 3xTg mouse model of Alzheimer’s disease. Cell Death Dis. 2023;14:138.

75. Coronel R, Bernabeu-Zornoza A, Palmer C, et al. Amyloid precursor protein (APP) regulates gliogenesis and neurogenesis of human neural stem cells by several signaling pathways. Int J Mol Sci. 2023;24:12964.

76. Fu CH, Iascone DM, Petrof I, et al. Early seizure activity accelerates depletion of hippocampal neural stem cells and impairs spatial discrimination in an Alzheimer’s disease model. Cell Rep. 2019;27:3741-51.e4.

77. Scopa C, Barnada SM, Cicardi ME, Singer M, Trotti D, Trizzino M. JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer’s disease. Nat Commun. 2023;14:8021.

78. You Y, Muraoka S, Jedrychowski MP, et al. Human neural cell type-specific extracellular vesicle proteome defines disease-related molecules associated with activated astrocytes in Alzheimer’s disease brain. J Extracell Vesicles. 2022;11:e12183.

79. Lee SJ, Nam E, Lee HJ, Savelieff MG, Lim MH. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev. 2017;46:310-23.

80. He N, Jin WL, Lok KH, Wang Y, Yin M, Wang ZJ. Amyloid-β(1-42) oligomer accelerates senescence in adult hippocampal neural stem/progenitor cells via formylpeptide receptor 2. Cell Death Dis. 2013;4:e924.

81. Walgrave H, Balusu S, Snoeck S, et al. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease. Cell Stem Cell. 2021;28:1805-21.e8.

82. Arber C, Lovejoy C, Harris L, et al. Familial Alzheimer’s disease mutations in PSEN1 lead to premature human stem cell neurogenesis. Cell Rep. 2021;34:108615.

83. Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21:726-34.

84. Zheng J, Li HL, Tian N, et al. Interneuron accumulation of phosphorylated tau impairs adult hippocampal neurogenesis by suppressing GABAergic transmission. Cell Stem Cell. 2020;26:331-45.e6.

85. Joseph M, Anglada-Huguet M, Paesler K, Mandelkow E, Mandelkow EM. Anti-aggregant tau mutant promotes neurogenesis. Mol Neurodegener. 2017;12:88.

86. Criado-Marrero M, Sabbagh JJ, Jones MR, Chaput D, Dickey CA, Blair LJ. Hippocampal neurogenesis is enhanced in adult tau deficient mice. Cells. 2020;9:210.

87. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nat Rev Neurol. 2021;17:157-72.

88. Amanollahi M, Jameie M, Heidari A, Rezaei N. The dialogue between neuroinflammation and adult neurogenesis: mechanisms involved and alterations in neurological diseases. Mol Neurobiol. 2023;60:923-59.

89. Hueston CM, O'Leary JD, Hoban AE, et al. Chronic interleukin-1β in the dorsal hippocampus impairs behavioural pattern separation. Brain Behav Immun. 2018;74:252-64.

90. Kong X, Gong Z, Zhang L, et al. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation. Brain Behav Immun. 2019;79:159-73.

91. Borsini A, Merrick B, Edgeworth J, et al. Neurogenesis is disrupted in human hippocampal progenitor cells upon exposure to serum samples from hospitalized COVID-19 patients with neurological symptoms. Mol Psychiatry. 2022;27:5049-61.

92. Altuna M, Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, et al. DNA methylation signature of human hippocampus in Alzheimer’s disease is linked to neurogenesis. Clin Epigenetics. 2019;11:91.

93. Kuehner JN, Chen J, Bruggeman EC, et al. 5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer’s disease. Cell Rep. 2021;35:109042.

94. Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener. 2022;11:4.

95. Fitzgerald GS, Chuchta TG, McNay EC. Insulin-like growth factor-2 is a promising candidate for the treatment and prevention of Alzheimer’s disease. CNS Neurosci Ther. 2023;29:1449-69.

96. Vidovic N, Spittau B. Microglial transforming growth factor-β signaling in Alzheimer’s disease. Int J Mol Sci. 2024;25:3090.

97. Wu X, Shen Q, Zhang Z, Zhang D, Gu Y, Xing D. Photoactivation of TGFβ/SMAD signaling pathway ameliorates adult hippocampal neurogenesis in Alzheimer’s disease model. Stem Cell Res Ther. 2021;12:345.

98. Licht T, Rothe G, Kreisel T, et al. VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci U S A. 2016;113:E7828-36.

99. Wang W, Li Y, Ma F, et al. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer’s disease model by restoring BDNF signaling. Brain Behav Immun. 2023;113:275-88.

100. Yousef H, Czupalla CJ, Lee D, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25:988-1000.

101. Tarawneh R. Microvascular contributions to Alzheimer disease pathogenesis: is Alzheimer disease primarily an endotheliopathy?. Biomolecules. 2023;13:830.

102. Salta E, Lazarov O, Fitzsimons CP, Tanzi R, Lucassen PJ, Choi SH. Adult hippocampal neurogenesis in Alzheimer’s disease: a roadmap to clinical relevance. Cell Stem Cell. 2023;30:120-36.

103. Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 2023;24:45-62.

104. Ohline SM, Chan C, Schoderboeck L, et al. Effect of soluble amyloid precursor protein-alpha on adult hippocampal neurogenesis in a mouse model of Alzheimer’s disease. Mol Brain. 2022;15:5.

105. Imbimbo BP, Giardino L, Sivilia S, et al. CHF5074, a novel gamma-secretase modulator, restores hippocampal neurogenesis potential and reverses contextual memory deficit in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2010;20:159-73.

106. Kuwar R, Rolfe A, Di L, et al. A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer’s disease transgenic mice. J Alzheimers Dis. 2021;82:1769-83.

107. Lou S, Gong D, Yang M, Qiu Q, Luo J, Chen T. Curcumin improves neurogenesis in Alzheimer’s disease mice via the upregulation of Wnt/β-catenin and BDNF. Int J Mol Sci. 2024;25:5123.

108. Zhu C, Ren X, Liu C, Liu Y, Wang Y. Rbm8a regulates neurogenesis and reduces Alzheimer’s disease-associated pathology in the dentate gyrus of 5×FAD mice. Neural Regen Res. 2024;19:863-71.

109. Morello M, Landel V, Lacassagne E, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2018;55:6463-79.

110. Borsini A, Nicolaou A, Camacho-Muñoz D, et al. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: relevance for major depression and for human hippocampal neurogenesis. Mol Psychiatry. 2021;26:6773-88.

111. Valenzuela PL, Castillo-García A, Morales JS, et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res Rev. 2020;62:101108.

112. Norevik CS, Huuha AM, Røsbjørgen RN, et al. Exercised blood plasma promotes hippocampal neurogenesis in the Alzheimer’s disease rat brain. J Sport Health Sci. 2024;13:245-55.

113. Huang T, Gong XK, Liang Z, et al. Exercised-enriched blood plasma rescues hippocampal impairments and cognitive deficits in an Alzheimer’s disease model. Biochim Biophys Acta Mol Basis Dis. 2024;1870:167197.

114. Wu X, Shen Q, Chang H, Li J, Xing D. Promoted CD4+ T cell-derived IFN-γ/IL-10 by photobiomodulation therapy modulates neurogenesis to ameliorate cognitive deficits in APP/PS1 and 3xTg-AD mice. J Neuroinflammation. 2022;19:253.

115. Li YD, Luo YJ, Xie L, et al. Activation of hypothalamic-enhanced adult-born neurons restores cognitive and affective function in Alzheimer’s disease. Cell Stem Cell. 2023;30:415-32.e6.

116. Hayashi Y, Lin HT, Lee CC, Tsai KJ. Effects of neural stem cell transplantation in Alzheimer’s disease models. J Biomed Sci. 2020;27:29.

117. Zhang HA, Yuan CX, Liu KF, et al. Neural stem cell transplantation alleviates functional cognitive deficits in a mouse model of tauopathy. Neural Regen Res. 2022;17:152-62.

118. Cheng Q, Ma X, Liu J, et al. Pharmacological inhibition of the asparaginyl endopeptidase (AEP) in an Alzheimer’s disease model improves the survival and efficacy of transplanted neural stem cells. Int J Mol Sci. 2023;24:7739.

119. Huang D, Cao Y, Yang X, et al. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for Alzheimer’s disease. Adv Mater. 2021;33:e2006357.

120. Lu MH, Ji WL, Chen H, et al. Intranasal transplantation of human neural stem cells ameliorates Alzheimer’s disease-like pathology in a mouse model. Front Aging Neurosci. 2021;13:650103.

121. Li Y, Fang B. Neural stem cell-derived extracellular vesicles: the light of central nervous system diseases. Biomed Pharmacother. 2023;165:115092.

122. Upadhya R, Madhu LN, Attaluri S, et al. Extracellular vesicles from human iPSC-derived neural stem cells: miRNA and protein signatures, and anti-inflammatory and neurogenic properties. J Extracell Vesicles. 2020;9:1809064.

123. Apodaca LA, Baddour AAD, Garcia C Jr, et al. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimers Res Ther. 2021;13:57.

124. Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019;22:719-28.

125. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20:385-97.

126. Höglinger GU, Rizk P, Muriel MP, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci. 2004;7:726-35.

127. O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A. 2009;106:8754-9.

128. Winner B, Melrose HL, Zhao C, et al. Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiol Dis. 2011;41:706-16.

129. Kohl Z, Ben Abdallah N, Vogelgsang J, et al. Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson’s disease. Neurobiol Dis. 2016;85:206-17.

130. van den Berge SA, van Strien ME, Korecka JA, et al. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain. 2011;134:3249-63.

131. Terreros-Roncal J, Moreno-Jiménez EP, Flor-García M, et al. Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science. 2021;374:1106-13.

132. Bonato JM, Bassani TB, Milani H, Vital MABF, de Oliveira RMW. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson’s disease in rats. Exp Neurol. 2018;300:188-200.

133. Martin-Lopez E, Vidyadhara DJ, Liberia T, et al. α-Synuclein pathology and reduced neurogenesis in the olfactory system affect olfaction in a mouse model of Parkinson’s disease. J Neurosci. 2023;43:1051-71.

134. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896-912.

135. Lennington JB, Pope S, Goodheart AE, et al. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. J Neurosci. 2011;31:13078-87.

136. Ohira K. Dopamine as a growth differentiation factor in the mammalian brain. Neural Regen Res. 2020;15:390-3.

137. Perez-Villalba A, Sirerol-Piquer MS, Belenguer G, et al. Synaptic regulator α-synuclein in dopaminergic fibers is essentially required for the maintenance of subependymal neural stem cells. J Neurosci. 2018;38:814-25.

138. Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: neuronal proliferation and differentiation. Acta Pharm Sin B. 2024;14:20-37.

139. Zasso J, Ahmed M, Cutarelli A, Conti L. Inducible alpha-synuclein expression affects human neural stem cells’ behavior. Stem Cells Dev. 2018;27:985-94.

140. Walter J, Bolognin S, Poovathingal SK, et al. The Parkinson’s-disease-associated mutation LRRK2-G2019S alters dopaminergic differentiation dynamics via NR2F1. Cell Rep. 2021;37:109864.

141. Park MH, Lee HJ, Lee HL, et al. Parkin knockout inhibits neuronal development via regulation of proteasomal degradation of p21. Theranostics. 2017;7:2033-45.

142. Agnihotri SK, Sun L, Yee BK, et al. PINK1 deficiency is associated with increased deficits of adult hippocampal neurogenesis and lowers the threshold for stress-induced depression in mice. Behav Brain Res. 2019;363:161-72.

143. Liu TW, Chen CM, Chang KH. Biomarker of neuroinflammation in Parkinson’s disease. Int J Mol Sci. 2022;23:4148.

144. Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson’s disease-from neurodegeneration to therapeutic opportunities. Cells. 2022;11:2908.

145. Edman LC, Mira H, Erices A, et al. Alpha-chemokines regulate proliferation, neurogenesis, and dopaminergic differentiation of ventral midbrain precursors and neurospheres. Stem Cells. 2008;26:1891-900.

146. Schmidt SI, Bogetofte H, Ritter L, et al. Microglia-secreted factors enhance dopaminergic differentiation of tissue- and iPSC-derived human neural stem cells. Stem Cell Rep. 2021;16:281-94.

147. Sabate-Soler S, Nickels SL, Saraiva C, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia. 2022;70:1267-88.

148. Desplats P, Patel P, Kosberg K, et al. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener. 2012;7:49.

149. Hornsby AKE, Buntwal L, Carisi MC, et al. Unacylated-ghrelin impairs hippocampal neurogenesis and memory in mice and is altered in Parkinson’s dementia in humans. Cell Rep Med. 2020;1:100120.

150. Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: a neglected participant in Parkinson disease pathogenesis and treatment?. Ageing Res Rev. 2020;57:100994.

151. Kim HI, Lim J, Choi HJ, Kim SH, Choi HJ. ERRγ ligand regulates adult neurogenesis and depression-like behavior in a LRRK2-G2019S-associated young female mouse model of Parkinson’s disease. Neurotherapeutics. 2022;19:1298-312.

152. Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of adult neurogenesis by intranasal administration of gangliosides GD3 and GM1 in the olfactory bulb of A53T alpha-synuclein-expressing Parkinson’s-disease model mice. Mol Neurobiol. 2023;60:3329-44.

153. Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: an in-depth review. Front Neurosci. 2022;16:970925.

154. Esteves M, Abreu R, Fernandes H, et al. MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease. Mol Ther. 2022;30:3176-92.

155. Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible neuroprotective mechanisms of physical exercise in neurodegeneration. Int J Mol Sci. 2020;21:5895.

156. Alarcón TA, Presti-Silva SM, Simões APT, Ribeiro FM, Pires RGW. Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson’s disease. Neural Regen Res. 2023;18:1450-6.

157. Lee Y, Lee H, Bae CH, et al. Electroacupuncture at GB34 modulates neurogenesis and BDNF-ERK signaling in a mouse model of Parkinson’s disease. J Tradit Complement Med. 2023;13:263-9.

158. Zhuo Y, Li WS, Lu W, et al. TGF-β1 mediates hypoxia-preconditioned olfactory mucosa mesenchymal stem cells improved neural functional recovery in Parkinson’s disease models and patients. Mil Med Res. 2024;11:48.

159. Xiong M, Tao Y, Gao Q, et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell. 2021;28:112-26.e6.

160. Kirkeby A, Nelander J, Hoban DB, et al; Novo Nordisk Cell Therapy R&D. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson’s disease, STEM-PD. Cell Stem Cell. 2023;30:1299-314.e9.

161. Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature. 2020;582:550-6.

162. Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363-80.

163. Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial dysfunction, neurogenesis, and epigenetics: putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front Neurosci. 2020;14:679.

164. Lin Z, Kim E, Ahmed M, et al. MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Commun. 2021;3:fcab114.

165. Swindell WR, Bojanowski K, Kindy MS, Chau RMW, Ko D. GM604 regulates developmental neurogenesis pathways and the expression of genes associated with amyotrophic lateral sclerosis. Transl Neurodegener. 2018;7:30.

166. Fenili G, Scaricamazza S, Ferri A, Valle C, Paronetto MP. Physical exercise in amyotrophic lateral sclerosis: a potential co-adjuvant therapeutic option to counteract disease progression. Front Cell Dev Biol. 2024;12:1421566.

167. Cudkowicz ME, Lindborg SR, Goyal NA, et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve. 2022;65:291-302.

168. Barczewska M, Maksymowicz S, Zdolińska-Malinowska I, Siwek T, Grudniak M. Umbilical cord mesenchymal stem cells in amyotrophic lateral sclerosis: an original study. Stem Cell Rev Rep. 2020;16:922-32.

169. Baloh RH, Johnson JP, Avalos P, et al. Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med. 2022;28:1813-22.

170. Ito D, Morimoto S, Takahashi S, Okada K, Nakahara J, Okano H. Maiden voyage: induced pluripotent stem cell-based drug screening for amyotrophic lateral sclerosis. Brain. 2023;146:13-9.

171. Morimoto S, Takahashi S, Ito D, et al; Pooled Resource Open-Access ALS Clinical Trials Consortium. Phase 1/2a clinical trial in ALS with ropinirole, a drug candidate identified by iPSC drug discovery. Cell Stem Cell. 2023;30:766-80.e9.

172. Tabrizi SJ, Estevez-Fraga C, van Roon-Mom WMC, et al. Potential disease-modifying therapies for Huntington’s disease: lessons learned and future opportunities. Lancet Neurol. 2022;21:645-58.

173. Zayed MA, Sultan S, Alsaab HO, et al. Stem-cell-based therapy: the celestial weapon against neurological disorders. Cells. 2022;11:3476.

174. Fedele V, Roybon L, Nordström U, Li JY, Brundin P. Neurogenesis in the R6/2 mouse model of Huntington’s disease is impaired at the level of NeuroD1. Neuroscience. 2011;173:76-81.

175. Gil JM, Mohapel P, Araújo IM, et al. Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis. 2005;20:744-51.

176. Ruzo A, Croft GF, Metzger JJ, et al. Chromosomal instability during neurogenesis in Huntington’s disease. Development. 2018;145:dev156844.

177. Braz BY, Wennagel D, Ratié L, et al. Treating early postnatal circuit defect delays Huntington’s disease onset and pathology in mice. Science. 2022;377:eabq5011.

178. Novati A, Nguyen HP, Schulze-Hentrich J. Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis. 2022;171:105725.

179. Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev. 2022;74:101543.

180. Park G, Rim YA, Sohn Y, Nam Y, Ju JH. Replacing animal testing with stem cell-organoids : advantages and limitations. Stem Cell Rev Rep. 2024;20:1375-86.

181. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. 2020;21:571-84.

182. Khandia R, Gurjar P, Priyanka , Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders - a review. Int J Surg. 2024;110:6367-81.

183. Myeong SH, Kim H, Lee NK, et al. Intracerebroventricular administration of human umbilical cord blood-derived mesenchymal stem cells induces transient inflammation in a transgenic mouse model and patients with Alzheimer’s disease. Biomedicines. 2022;10:563.

184. Zhou W, Wang X, Dong Y, et al. Stem cell-derived extracellular vesicles in the therapeutic intervention of Alzheimer’s disease, Parkinson’s disease, and stroke. Theranostics. 2024;14:3358-84.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/