REFERENCES

1. Suhm T, Ott M. Mitochondrial translation and cellular stress response. Cell Tissue Res 2017;367:21-31.

2. Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci 2021;46:329-43.

3. Domanskyi A, Parlato R. Oxidative stress in neurodegenerative diseases. Antioxidants 2022;11:504.

4. Guo RY, Gu JK, Zong S, Wu M, Yang MJ. Structure and mechanism of mitochondrial electron transport chain. Biomed J 2018;41:9-20.

5. Nirody JA, Budin I, Rangamani P. ATP synthase: evolution, energetics, and membrane interactions. J Gen Physiol 2020;152:e201912475.

6. Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded F(O)structure. Crit Rev Biochem Mol Biol 2020;55:309-21.

7. Patel BA, D’Amico TL, Blagg BSJ. Natural products and other inhibitors of F1FO ATP synthase. Eur J Med Chem 2020;207:112779.

8. He J, Carroll J, Ding S, Fearnley IM, Walker JE. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc Natl Acad Sci USA 2017;114:9086-91.

9. He JY, Ford HC, Carroll J et al. Assembly of the membrane domain of ATP synthase in human mitochondria. Proc Natl Acad Sci USA 2018;115:2988-93.

10. Bae JY, Park KS, Seon JK, Kwak DS, Jeon I, Song EK. Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Med Biol Eng Comput 2012;50:53-60.

11. Kuhlbrandt W. Structure and mechanisms of F-Type ATP synthases. Annu Rev Biochem 2019;88:515-49.

12. Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Microb Cell 2015;2:105-25.

13. Ohsakaya S, Fujikawa M, Hisabori T, Yoshida M. Knockdown of DAPIT (Diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP synthase in mitochondria. J Biol Chem 2011;286:20292-6.

14. Antoniel M, Giorgio V, Fogolari F, Glick GD, Bernardi P, Lippe G. The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int J Mol Sci 2014;15:7513-36.

15. Giorgio V, Fogolari F, Lippe G, Bernardi P. OSCP subunit of mitochondrial ATP synthase: role in regulation of enzyme function and of its transition to a pore. Br J Pharmacol 2019;176:4247-57.

16. Nesci S, Trombetti F, Ventrella V, Pagliarani A. The c-Ring of the F1Fo-ATP synthase: facts and perspectives. J Membr Sci 2016;249:11-21.

17. Lu ZJ, Song QF, Jiang SS et al. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer 2009;9:1-8.

18. Kulish O, Wright AD, Terentjev EM. F-1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft. Sci Rep 2016;6:1-14.

19. Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 1994;370:621-8.

20. Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M. Chemomechanical coupling of human mitochondrial F-1-ATPase motor. Nat Chem Biol 2014;10:930-6.

21. Sobti M, Ueno H, Noji H, Stewart AG. The six steps of the complete F-1-ATPase rotary catalytic cycle. Nat Commun 2021;12:4690.

22. Joubert F, Puff N. Mitochondrial cristae architecture and functions: lessons from minimal model systems. Membranes 2021;11:465.

23. Arselin G, Vaillier J, Salin B et al. The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. J Biol Chem 2004;279:40392-9.

24. Gottschalk B, Madreiter-Sokolowski CT, Graier WF. Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics. Cell Calcium 2022;101:102517.

25. Zhou Z, Zhang KL, Liu ZH et al. ATPAF1 deficiency impairs ATP synthase assembly and mitochondrial respiration. Mitochondrion 2021;60:129-41.

26. Siegmund SE, Grassucci R, Carter SD et al. Three-dimensional analysis of mitochondrial crista ultrastructure in a patient with leigh syndrome by in situ cryoelectron tomography. Iscience 2018;6:83-91.

27. Kucharczyk R, Rak M, di Rago JP. Biochemical consequences in yeast of the human mitochondrial DNA 8993T > C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta Mol Cell Res 2009;1793:817-24.

28. Anand R, Reichert AS, Kondadi AK. Emerging roles of the MICOS complex in cristae dynamics and biogenesis. Biology 2021;10:600.

29. Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021;595:1159-83.

30. Vrbacky M, Kovalcikova J, Harant K, Pecinova A, Houstek J, Mracek T. Mitochondrial ATP synthase disorders investigated by quantitative proteomics of CRISPR-Cas9 knockout cell lines. Mol Cell Proteomics 2017;16:S33-S.

31. Sileikyte J, Forte M. The mitochondrial permeability transition in mitochondrial disorders. Oxid Med Cell Longev 2019:2019.

32. Bonora M, Giorgi C, Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol 2022;23:266-85.

33. Kharechkina E, Nikiforova A, Kruglov A. NAD(H) regulates the permeability transition pore in mitochondria through an external site. Int J Mol Sci 2021:22.

34. Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res 2020;126:280-93.

35. Carraro M, Giorgio V, Sileikyte J et al. Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 2014;289:15980-5.

36. von Stockum S, Giorgio V, Trevisan E et al. F-ATPase of drosophila melanogaster forms 53-Picosiemen (53-pS) channels responsible for mitochondrial Ca2+-induced Ca2+ release. J Biol Chem 2015;290:4537-44.

37. Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial permeability transition pore: channel formation by F-Atp synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 2015;95:1111-55.

38. Giorgio V, von Stockum S, Antoniel M et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 2013;110:5887-92.

39. Alavian KN, Beutner G, Lazrove E et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 2014;111:10580-5.

40. Neginskaya MA, Solesio ME, Berezhnaya EV et al. ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore. Cell Rep 2019;26:11-17.e2.

41. Karch J, Kwong JQ, Burr AR et al. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2013;2:e00772.

42. Giorgio V, Burchell V, Schiavone M et al. Ca2+ binding to F-ATP synthase beta subunit triggers the mitochondrial permeability transition. EMBO Rep 2017;18:1065-76.

43. He JY, Ford HC, Carroll J, Ding SJ, Fearnley IM, Walker JE. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci USA 2017;114:3409-14.

44. Zech M, Kopajtich R, Steinbrucker K et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann Neurol 2022;91:225-37.

45. Xing SL, Yan J, Yu ZH, Zhu CQ. Neuronal cell surface ATP synthase mediates synthesis of extracellular ATP and regulation of intracellular pH. Cell Biol Int 2011;35:81-6.

46. Morgenstern M, Peikert CD, Lubbert P et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab 2021;33:2464-83.e18.

47. Jove M, Pradas I, Dominguez-Gonzalez M, Ferrer I, Pamplona R. Lipids and lipoxidation in human brain aging. Mitochondrial ATP-synthase as a key lipoxidation target. Redox Biol 2019;23:101082.

48. Dominguez M, de Oliveira E, Odena MA, Portero M, Pamplona R, Ferrer I. Redox proteomic profiling of neuroketal-adducted proteins in human brain: regional vulnerability at middle age increases in the elderly. Free Radic Biol Med 2016;95:1-15.

49. Terni B, Boada J, Portero-Otin M, Pamplona R, Ferrer I. Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer’s disease pathology. Brain Pathol 2010;20:222-33.

50. Fernandez IS, Goodkin HP, Scott RC. Pathophysiology of convulsive status epilepticus. Seizure 2019;68:16-21.

51. Beck SJ, Guo L, Phensy A et al. Deregulation of mitochondrial F1Fo-ATP synthase via OSCP in Alzheimer’s disease. Nat Commun 2016;7:11483.

52. Tebbenkamp ATN, Varela L, Choi J et al. The 7q11.23 protein DNAJC30 interacts with ATP synthase and links mitochondria to brain development. Cell 2018;175:1088-104.e23.

53. Su X, Rak M, Tetaud E et al. Deregulating mitochondrial metabolite and ion transport has beneficial effects in yeast and human cellular models for NARP syndrome. Hum Mol Genet 2019;28:3792-804.

54. Patro S, Ratna S, Yamamoto HA et al. ATP synthase and mitochondrial bioenergetics dysfunction in Alzheimer’s disease. Int J Mol Sci 2021;22:11185.

55. Morelli AM, Chiantore M, Ravera S, Scholkmann F, Panfoli I. Myelin sheath and cyanobacterial thylakoids as concentric multilamellar structures with similar bioenergetic properties. Open Biol 2021;11:210177.

56. Chen KH, Lin CR, Cheng JT, Cheng JK, Liao WT, Yang CH. Altered mitochondrial ATP synthase expression in the rat dorsal root ganglion after sciatic nerve injury and analgesic effects of intrathecal ATP. Cell Mol Neurobiol 2014;34:51-9.

57. Saleem U, Sabir S, Niazi SG, Naeem M, Ahmad B. Role of oxidative stress and antioxidant defense biomarkers in neurodegenerative diseases. Crit Rev Eukaryot Gene Expr 2020;30:311-22.

58. Schagger H, Ohm TG. Human diseases with defects in oxidative phosphorylation. 2. F1F0 ATP-synthase defects in Alzheimer disease revealed by blue native polyacrylamide gel electrophoresis. Eur J Biochem 1995;227:916-21.

59. Martin-Maestro P, Sproul A, Martinez H et al. Autophagy induction by bexarotene promotes mitophagy in presenilin 1 familial Alzheimer’s disease iPSC-derived neural stem cells. Mol Neurobiol 2019;56:8220-36.

60. Orr AL, Kim C, Jimenez-Morales D et al. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J Alzheimer’s Dis 2019;68:991-1011.

61. Ramzan R, Dolga AM, Michels S et al. Cytochrome c oxidase inhibition by ATP decreases mitochondrial ROS production. Cells 2022;11:992.

62. Schmidt C, Lepsverdize E, Chi SL et al. Amyloid precursor protein and amyloid beta-peptide bind to ATP synthase and regulate its activity at the surface of neural cells. Mol Psychiatry 2008;13:953-69.

63. Wilkins HM, Troutwine BR, Menta BW et al. Mitochondrial membrane potential influences amyloid-beta protein precursor localization and amyloid-beta secretion. J Alzheimer’s Dis 2022;85:381-94.

64. Lindeboom J, Weinstein H. Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer’s disease, and vascular cognitive impairment. Eur J Pharmacol 2004;490:83-6.

65. Chen H, Tian J, Guo L, Du H. Caspase inhibition rescues F1Fo ATP synthase dysfunction-mediated dendritic spine elimination. Sci Rep 2020;10:17589.

66. Pfeiffer A, Schneider J, Bueno D et al. Bcl-x(L) knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity. Free Radic Biol Med 2017;112:350-9.

67. Ding BQ, Xi Y, Gao M et al. Gene expression profiles of entorhinal cortex in Alzheimer’s disease. Am J Alzheimer’s Dis Other Demen 2014;29:526-32.

68. Yu HT, Lin X, Wang D et al. Mitochondrial molecular abnormalities revealed by proteomic analysis of hippocampal organelles of mice triple transgenic for Alzheimer disease. Front Mol Neurosci 2018;11:74.

69. Gauba E, Guo L, Du H. Cyclophilin D promotes brain mitochondrial F1FO ATP synthase dysfunction in aging mice. J Alzheimer’s Dis 2017;55:1351-62.

70. Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson’s disease: a promising direction for therapeutic strategies. Bosn J Basic Med Sci 2021;21:422-33.

71. del Hoyo P, García-Redondo A, de Bustos F, et al. Oxidative stress in skin fibroblasts cultures from patients with Parkinson’s disease. BMC Neurol ;10:95.

72. Ferrer I, Perez E, Dalfó E, Barrachina M. Abnormal levels of prohibitin and ATP synthase in the substantia nigra and frontal cortex in Parkinson’s disease. Neurosci Lett 2007;415:205-9.

73. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019;18:e13031.

74. Tripathi T, Chattopadhyay K. Interaction of alpha-synuclein with ATP synthase: switching role from physiological to pathological. ACS Chem Neurosci 2019;10:16-7.

75. Ludtmann MHR, Angelova PR, Horrocks MH et al. Alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 2018;9:2293.

76. Ludtmann MHR, Angelova PR, Ninkina NN, Gandhi S, Buchman VL, Abramov AY. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. J Neurosci 2016;36:10510-21.

77. Wang XH, Becker K, Levine N et al. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol Commun 2019;7:1-14.

78. Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 2015;14:274-82.

79. Zhou W, Ma D, Tan EK. Mitochondrial CHCHD2 and CHCHD10: roles in neurological diseases and therapeutic implications. Neuroscientist 2020;26:170-84.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/