REFERENCES

1. American Cancer Society. Cancer Facts & Figures, 2019. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf [Last accessed on 26 Mar 2020].

2. World Health Organization, Cancers, 2010. Available from: https://www.who.int/nmh/publications/fact_sheet_cancers_en.pdf [Last accessed on 26 Mar 2020].

3. Chávez-López MG, Zúñiga-García V, Pérez-Carreón JI, Avalos-Fuentes A, Escobar Y, et al. Eag1 channels as potential early-stage biomarkers of hepatocellular carcinoma. Biologics 2016;10:139-48.

4. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 2013;47:S2-6.

5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71-96.

6. Chuang SC, La Vecchia C, Boffetta P. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett 2009;286:9-14.

7. Gomes MA, Priolli DG, Tralhão JG, Botelho MF. Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev Assoc Med Bras (1992) 2013;59:514-24.

8. Ali ES, Rychkov GY, Barritt GJ. Metabolic disorders and cancer: hepatocyte store-operated Ca2+ channels in nonalcoholic fatty liver disease. Adv Exp Med Biol 2017;993:595-621.

9. Herbst DA, Reddy KR. Risk factors for hepatocellular carcinoma. Clin Liver Dis (Hoboken) 2012;1:180-2.

10. Sherman M, Llovet JM. Smoking, hepatitis B virus infection, and development of hepatocellular carcinoma. J Natl Cancer Inst 2011;103:1642-3.

11. Bruix J, Llovet JM. Hepatitis B virus and hepatocellular carcinoma. J Hepatol 2003;39:S59-63.

12. Barker BS, Young GT, Soubrance CH, Stephens GJ, Stevens EB, et al. Conn’s Translational Neuroscience, Chapter 2- Ion Channels. Academic Press; 2017. pp. 11-43.

13. Martial S. Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. Am J Physiol Cell Physiol 2016;310:C710-27.

14. Lang F, Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci 2014;369:20130108.

15. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011;3:a003947.

16. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:517-29.

17. Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y. Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci 2014;369:20130097.

18. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, et al. Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 2008;14:4984-91.

19. Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008;8:361-75.

20. Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015;72:3677-93.

21. Ramirez A, Vazquez-Sanchez AY, Carrion-Robalino N, Camacho J. Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxid Med Cell Longev 2016;2016:3928714.

22. Pardo LA, Stuhmer W. The roles of K+ channels in cancer. Nat Rev Cancer 2014;14:39-48.

23. Angus M, Ruben P. Voltage gated sodium channels in cancer and their potential mechanisms of action. Channels (Austin) 2019;13:400-9.

24. Djamgoz MBA, Onkal R. Persistent current blockers of voltage-gated sodium channels: a clinical opportunity for controlling metastatic disease. Recent Pat Anticancer Drug Discov 2013;8:66-84.

25. Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci 2014;369:20130105.

26. Brackenbury WJ. Voltage-gated sodium channels and metastatic disease. Channels (Austin) 2012;6:352-61.

27. Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov 2009;8:153-71.

28. Turner KL, Sontheimer H. Cl- and K+ channels and their role in primary brain tumour biology. Philos Trans R Soc Lond B Biol Sci 2014;369:20130095.

29. Li RK, Zhang J, Zhang YH, Li ML, Wang M, et al. Chloride intracellular channel 1 is an important factor in the lymphatic metastasis of hepatocarcinoma. Biomed Pharmacother 2012;66:167-72.

30. Saberbaghi T, Wong R, Rutka JT, Wang GL, Feng ZP, et al. Role of Cl- channels in primary brain tumor. Cell Calcium 2019;81:1-11.

31. Zhang S, Wang XM, Yin ZY, Zhao WX, Zhou JY, et al. Chloride intracellular channel 1 is overexpression in hepatic tumor and correlates with a poor prognosis. APMIS 2013;121:1047-53.

32. Jablonski EM, Mattocks MA, Sokolov E, Koniaris LG, Hughes FM Jr, et al. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett 2007;250:36-46.

33. Pelagalli A, Squillacioti C, Mirabella N, Meli R. Aquaporins in health and disease: an overview focusing on the gut of different species. Int J Mol Sci 2016;17.

34. Gregoire F, Lucidi V, Zerrad-Saadi A, Virreira M, Bolaky N, et al. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem Cell Biol 2015;144:347-63.

35. Zhu S, Ran J, Yang B, Mei Z. Aquaporins in digestive system. Adv Exp Med Biol 2017;969:123-30.

36. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE, et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995;268:423-6.

37. Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, et al. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. J Biol Chem 2000;275:26050-7.

38. Mohamed YS, Ahmed LA, Salem HA, Agha AM. Role of nitric oxide and KATP channel in the protective effect mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats. Biochem Pharmacol 2018;151:135-42.

39. Nogueira MA, Coelho AM, Sampietre SN, Patzina RA, Pinheiro da Silva F, et al. Beneficial effects of adenosine triphosphate-sensitive K+ channel opener on liver ischemia/reperfusion injury. World J Gastroenterol 2014;20:15319-26.

40. Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014;10:51-70.

41. Burnstock G. Purinergic signalling: therapeutic developments. Front Pharmacol 2017;8:661.

42. Doctor RB, Matzakos T, McWilliams R, Johnson S, Feranchak AP, et al. Purinergic regulation of cholangiocyte secretion: identification of a novel role for P2X receptors. Am J Physiol Gastrointest Liver Physiol 2005;288:G779-86.

43. Emmett DS, Feranchak A, Kilic G, Puljak L, Miller B, et al. Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 2008;47:698-705.

44. Zhang Y, Zhang T, Wu C, Xia Q, Xu D. ASIC1a mediates the drug resistance of human hepatocellular carcinoma via the Ca2+/PI3-kinase/AKT signaling pathway. Lab Invest 2017;97:53-69.

45. Ali ES, Rychkov GY, Barrit GJ. Deranged hepatocyte intracelular Ca2+ homeoatasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 2019;82:102057.

46. Jimenez H, Wang M, Zimmerman JW, Pennison MJ, Sharma S, et al. Tumour-specific amplitude-modulated radiofrequency electromagnetic fields induce differentiation of hepatocellular carcinoma via targeting Cav3.2 T-type voltage-gated calcium channels and Ca2+ influx. EBiomedicine 2019;44:209-24.

47. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013;13:123-35.

48. Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011;26:144-52.

49. Geng M, Xin X, Bi LQ, Zhou LT, Liu XH. Molecular mechanism of hepatitis B virus X protein function in hepatocarcinogenesis. World J Gastroenterol 2015;21:10732-8.

50. Tarocchi M, Polvani S, Marroncini G, Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J Gastroenterol 2014;20:11630-40.

51. Casciano JC, Bouchard MJ. Hepatitis B virus X protein modulates cytosolic Ca2+ signaling in primary human hepatocytes. Virus Res 2018;246:23-7.

52. Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 2001;294:2376-8.

53. Yao JH, Liu ZJ, Yi JH, Wang J, Liu YN. Hepatitis B Virus X protein upregulates intracellular calcium signaling by binding C-terminal of orail protein. Curr Med Sci 2018;38:26-34.

54. Yen TT, Yang A, Chiu WT, Li TN, Wang LH, et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability. Oncotarget 2016;7:23346-60.

55. Zhang Z, Chen J, He Y, Zhan X, Zhao R, et al. miR-125b inhibits hepatitis B virus expression in vitro through targeting of the SCNN1A gene. Arch Virol 2014;159:3335-43.

56. Taylor JM, Han Z. Purinergic receptor functionality is necessary for infection of human hepatocytes by hepatitis delta virus and hepatitis B virus. PloS One 2010;5:e15784.

57. Wirth TC, Manns MP. The impact of the revolution in hepatitis C treatment on hepatocellular carcinoma. Ann Oncol 2016;27:1467-74.

58. Jahan S, Ashfaq UA, Qasim M, Khaliq S, Saleem MJ, et al. Hepatitis C virus to hepatocellular carcinoma. Infect Agent Cancer 2012;7:2.

59. Griffin SD, Beales LP, Clarke DS, Worsfold O, Evans SD, et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 2003;535:34-8.

60. Chandler DE, Penin F, Schulten K, Chipot C. The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. PLoS Comput Biol 2012;8:e1002702.

61. Foster TL, Verow M, Wozniak AL, Bentham MJ, Thompson J, et al. Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology 2011;54:79-90.

62. Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 2007;81:8374-83.

63. Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, et al. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 2007;3:e103.

64. Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog 2010;6:e1001087.

65. Griffin S, Stgelais C, Owsianka AM, Patel AH, Rowlands D, et al. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 2008;48:1779-90.

66. Steinmann E, Whitfield T, Kallis S, Dwek RA, Zitzmann N, et al. Antiviral effects of amantadine and iminosugar derivatives against hepatitis C virus. Hepatology 2007;46:330-8.

67. Shiryaev VA, Radchenko EV, Palyulin VA, Zefirov NS, Bormotov NI, et al. Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels. Eur J Med Chem 2018;158:214-35.

68. Pietschmann T. Clinically approved ion channel inhibitors close gates for hepatitis C virus and open doors for drug repurposing in infectious viral diseases. J Virol 2017;91.

69. Breitinger U, Farag NS, Ali NKM, Breitinger HA. Patch-clamp study of hepatitis C p7 channels reveals genotype-specific sensitivity to inhibitors. Biophy J 2016;110:2419-29.

70. Hong W, Lang Y, Li T, Zeng Z, Song Y, et al. A p7 ion channel-derived peptide inhibits hepatitis C virus infection in vitro. J Biol Chem 2015;290:23254-63.

71. Pavlovic D, Neville DC, Argaud O, Blumberg B, Dwek RA, et al. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A 2003;100:6104-8.

72. Manzoor S, Idrees M, Ashraf J, Mehmood A, Butt S, et al. Identification of ionotrophic purinergic receptors in Huh-7 cells and their response towards structural proteins of HCV genotype 3a. Virol J 2011;8:431.

73. Manzoor S, Akhtar U, Naseem S, Khalid M, Mazhar M, et al. Ionotropic purinergic receptors P2X4 and P2X7: proviral or antiviral? An insight into P2X receptor signaling and hepatitis C virus infection. Viral Immunol 2016;29:401-8.

74. Sidorkiewicz M, Brocka M, Bronis M, Grek M, Jozwiak B, et al. The altered expression of alpha1 and beta3 subunits of the gamma-aminobutyric acid A receptor is related to the hepatitis C virus infection. Eur J Clin Microbiol Infect Dis 2012;31:1537-42.

75. Streba LA, Vere CC, Rogoveanu I, Streba CT. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: an open question. World J Gastroenterol 2015;21:4103-10.

76. Kikuchi L, Oliveira CP, Carrilho FJ. Nonalcoholic fatty liver disease and hepatocellular carcinoma. Biomed Res Int 2014;2014:106247.

77. Dhamija E, Paul SB, Kedia S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: an increasing concern. Indian J Med Res 2019;149:9-17.

78. Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 2010;3:385-96.

79. Freise C, Heldwein S, Erben U, Hoyer J, Kohler R, et al. K+-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells. Liver Int 2015;35:1244-52.

80. Paka L, Smith DE, Jung D, McCormack S, Zhou P, et al. Anti-steatotic and anti-fibrotic effects of the KCa3.1 channel inhibitor, Senicapoc, in non-alcoholic liver disease. World J Gastroenterol 2017;23:4181-90.

81. Blasetti Fantauzzi C, Menini S, Iacobini C, Rossi C, Santini E, et al. Deficiency of the purinergic receptor 2X7 attenuates nonalcoholic steatohepatitis induced by high-fat diet: possible role of the NLRP3 inflammasome. Oxid Med Cell Longev 2017;2017:8962458.

82. Shang Y, Li XF, Jin MJ, Li Y, Wu YL, et al. Leucodin attenuates inflammatory response in macrophages and lipid accumulation in steatotic hepatocytes via P2x7 receptor pathway: a potential role in alcoholic liver disease. Biomed Pharmacother 2018;107:374-81.

83. Huang C, Yu W, Cui H, Wang Y, Zhang L, et al. P2X7 blockade attenuates mouse liver fibrosis. Mol Med Rep 2014;9:57-62.

84. Wilson CH, Ali ES, Scrimgeour N, Martin AM, Hua J, et al. Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. Biochem J 2015;466:379-90.

85. Grimm C, Holdt LM, Chen CC, Hassan S, Muller C, et al. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun 2014;5:4699.

86. Li Q, Li L, Wang F, Chen J, Zhao Y, et al. Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activated receptor delta activation. Pflugers Arch 2013;465:1303-16.

87. Li L, Chen J, Ni Y, Feng X, Zhao Z, et al. TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice. Pflugers Arch 2012;463:727-32.

88. Zhan L, Li J. The role of TRPV4 in fibrosis. Gene 2018;642:1-8.

89. Iyer SC, Kannan A, Gopal A, Devaraj N, Halagowder D. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition. Exp Cell Res 2015;336:66-75.

90. Fang L, Zhan S, Huang C, Cheng X, Lv X, et al. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways. Toxicol Appl Pharmacol 2013;272:713-25.

91. Pan CX, Wu FR, Wang XY, Tang J, Gao WF, et al. Inhibition of ASICs reduces rat hepatic stellate cells activity and liver fibrosis: an in vitro and in vivo study. Cell Biol Int 2014;38:1003-12.

92. Starr SP, Raines D. Cirrhosis: diagnosis, management, and prevention. Am Fam Physician 2011;84:1353-9.

93. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014;383:1749-61.

94. Romanelli RG, Stasi C. Recent advancements in diagnosis and therapy of liver cirrhosis. Curr Drug Targets 2016;17:1804-17.

95. Liu G, Xie C, Sun F, Xu X, Yang Y, et al. Clinical significance of transient receptor potential vanilloid 2 expression in human hepatocellular carcinoma. Cancer Genet Cytogenet 2010;197:54-9.

96. Zúñiga-García V, Chávez-López Mde G, Quintanar-Jurado V, Gabiño-López NB, Hernández-Gallegos E, et al. Differential expression of ion channels and transporters during hepatocellular carcinoma development. Dig Dis Sci 2015;60:2373-83.

97. Dufour JF, Luthi M, Forestier M, Magnino F. Expression of inositol 1,4,5-trisphosphate receptor isoforms in rat cirrhosis. Hepatology 1999;30:1018-26.

98. Xian ZH, Cong WM, Wang YH, Wang B, Wu MC. Expression and localization of aquaporin-1 in human cirrhotic liver. Pathol Res Pract 2009;205:774-80.

99. Yokomori H, Oda M, Yoshimura K, Kaneko F, Hibi T. Aquaporin-1 associated with hepatic arterial capillary proliferation on hepatic sinusoid in human cirrhotic liver. Liver Int 2011;31:1554-64.

100. Fabrega E, Berja A, Garcia-Unzueta MT, Guerra-Ruiz A, Cobo M, et al. Influence of aquaporin-1 gene polymorphism on water retention in liver cirrhosis. Scand J Gastroenterol 2011;46:1267-74.

101. Rodríguez-Vilarrupla A, Graupera M, Matei V, Bataller R, Abraldes JG, et al. Large-conductance calcium-activated potassium channels modulate vascular tone in experimental cirrhosis. Liver Int 2008;28:566-73.

102. Yu Z, Serra A, Sauter D, Loffing J, Ackermann D, et al. Sodium retention in rats with liver cirrhosis is associated with increased renal abundance of NaCl cotransporter (NCC). Nephrol Dial Transplant 2005;20:1833-41.

103. Yang XW, Liu JW, Zhang RC, Yin Q, Shen WZ, et al. Inhibitory effects of blockage of intermediate conductance Ca2+-activated K+ channels on proliferation of hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci 2013;33:86-89.

104. Freise C, Ruehl M, Seehofer D, Hoyer J, Somasundaram R. The inhibitor of Ca2+-dependent K+ channels TRAM-34 blocks growth of hepatocellular carcinoma cells via downregulation of estrogen receptor alpha mRNA and nuclear factor-kappaB. Invest New Drugs 2013;31:452-7.

105. Fan H, Zhang M, Liu W. Hypermethylated KCNQ1 acts as a tumor suppressor in hepatocellular carcinoma. Biochem Biophys Res Commun 2018;503:3100-7.

106. Zhang K, Mu L, Ding MC, Xu R, Ding ZJ, et al. NFkappaB mediated elevation of KCNJ11 promotes tumor progression of hepatocellular carcinoma through interaction of lactate dehydrogenase A. Biochem Biophys Res Commun 2018;495:246-53.

107. Pardo LA, Stuhmer W. Eag1: an emerging oncological target. Cancer Res 2008;68:1611-3.

108. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009;8:982-1001.

109. Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, et al. Oncogenic potential of EAG K+ channels. EMBO J 1999;18:5540-7.

110. Rodríguez-Rasgado JA, Acuña-Macías I, Camacho J. Eag1 channels as potential cancer biomarkers. Sensors (Basel) 2012;12:5986-95.

111. Farias LM, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, et al. Ether a go-go potassium channels as human cervical cancer markers. Cancer Res 2004;64:6996-7001.

112. Gómez-Varela D, Zwick-Wallasch E, Knötgen H, Sánchez A, Hettmann T, et al. Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 2007;67:7343-9.

113. García-Becerra R, Díaz L, Camacho J, Barrera D, Ordaz-Rosado D, et al. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells. Exp Cell Res 2010;316:433-42.

114. Weber C, Mello de Queiroz F, Downie BR, Suckow A, Stuhmer W, et al. Silencing the activity and proliferative properties of the human EagI Potassium Channel by RNA Interference. J Biol Chem 2006;281:13030-7.

115. de Guadalupe Chávez-López M, Pérez-Carreón JI, Zuñiga-García V, Díaz-Chávez J, Herrera LA, et al. Astemizole-based anticancer therapy for hepatocellular carcinoma (HCC), and Eag1 channels as potential early-stage markers of HCC. Tumour Biol 2015;36:6149-58.

116. Dziegielewska B, Gray LS, Dziegielewski J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch 2014;466:801-10.

117. Li Y, Liu S, Lu F, Zhang T, Chen H, et al. A role of functional T-type Ca2+ channel in hepatocellular carcinoma cell proliferation. Oncol Rep 2009;22:1229-35.

118. Xie R, Xu J, Wen G, Jin H, Liu X, et al. The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular carcinoma cells induced by ATP. J Biol Chem 2014;289:19137-49.

119. Maynard JP, Lee JS, Sohn BH, Yu X, Lopez-Terrada D, et al. P2X3 purinergic receptor overexpression is associated with poor recurrence-free survival in hepatocellular carcinoma patients. Oncotarget 2015;6:41162-79.

120. Yang N, Tang Y, Wang F, Zhang H, Xu D, et al. Blockade of store-operated Ca2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett 2013;330:163-9.

121. Tang BD, Xia X, Lv XF, Yu BX, Yuan JN, et al. Inhibition of Orai1-mediated Ca2+ entry enhances chemosensitivity of HepG2 hepatocarcinoma cells to 5-fluorouracil. J Cell Mol Med 2017;21:904-15.

122. Wang R, Kang B, Hu R, Huang Y, Qin Z, et al. ClC-3 chloride channel protein induces G1 arrest in hepatocellular carcinoma Hep3B cells. Oncol Rep 2018;40:472-8.

123. Wei X, Li J, Xie H, Wang H, Wang J, et al. Chloride intracellular channel 1 participates in migration and invasion of hepatocellular carcinoma by targeting maspin. J Gastroenterol Hepatol 2015;30:208-16.

124. Guo G, Cui Y, Chen H, Zhang L, Zhao M, et al. Analgesic-antitumor peptide inhibits the migration and invasion of HepG2 cells by an upregulated VGSC beta1 subunit. Tumour Biol 2016;37:3033-41.

125. He Z, Dong W, Hu J, Ren X. AQP5 promotes hepatocellular carcinoma metastasis via NF-kappaB-regulated epithelial-mesenchymal transition. Biochem Biophy Res Commun 2017;490:343-8.

126. Zhang Z, Han Y, Sun G, Liu X, Jia X, et al. MicroRNA-325-3p inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma by down-regulation of aquaporin 5. Cell Mol Biol Lett 2019;24:13.

127. Li CF, Zhang WG, Liu M, Qiu LW, Chen XF, et al. Aquaporin 9 inhibits hepatocellular carcinoma through up-regulating FOXO1 expression. Oncotarget 2016;7:44161-70.

128. Zhang WG, Li CF, Liu M, Chen XF, Shuai K, et al. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition. Cancer Lett 2016;378:111-9.

129. Xu J, Yang Y, Xie R, Liu J, Nie X, et al. The NCX1/TRPC6 complex mediates TGFbeta-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res 2018;78:2564-76.

130. Tian Y, Zhu MX. A novel TRPC6-dependent mechanism of TGF-beta-induced migration and invasion of human hepatocellular carcinoma cells. Sci China Life Sci 2018;61:1120-2.

131. Wen L, Liang C, Chen E, Chen W, Liang F, et al. Regulation of multi-drug resistance in hepatocellular carcinoma cells is TRPC6/calcium dependent. Sci Rep 2016;6:23269.

132. Selli C, Erac Y, Kosova B, Erdal ES, Tosun M. Silencing of TRPC1 regulates store-operated calcium entry and proliferation in Huh7 hepatocellular carcinoma cells. Biomed Pharmacother 2015;71:194-200.

133. Selli C, Pearce DA, Sims AH, Tosun M. Differential expression of store-operated calcium- and proliferation-related genes in hepatocellular carcinoma cells following TRPC1 ion channel silencing. Mol Cell Biochem 2016;420:129-40.

134. Miao X, Liu G, Xu X, Xie C, Sun F, et al. High expression of vanilloid receptor-1 is associated with better prognosis of patients with hepatocellular carcinoma. Cancer Genet Cytogenet 2008;186:25-32.

135. Chen WT, Lin GB, Lin SH, Lu CH, Hsieh CH, et al. Static magnetic field enhances the anticancer efficacy of capsaicin on HepG2 cells via capsaicin receptor TRPV1. PloS One 2018;13:e0191078.

136. Hu Z, Cao X, Fang Y, Liu G, Xie C, et al. Transient receptor potential vanilloid-type 2 targeting on stemness in liver cancer. Biomed Pharmacother 2018;105:697-706.

137. Fang Y, Liu G, Xie C, Qian K, Lei X, et al. Pharmacological inhibition of TRPV4 channel suppresses malignant biological behavior of hepatocellular carcinoma via modulation of ERK signaling pathway. Biomed Pharmacother 2018;101:910-9.

138. Chen Y, Yu Y, Sun S, Wang Z, Liu P, et al. Bradykinin promotes migration and invasion of hepatocellular carcinoma cells through TRPM7 and MMP2. Exp Cell Res 2016;349:68-76.

139. Jin C, Ye QH, Yuan FL, Gu YL, Li JP, et al. Involvement of acid-sensing ion channel 1alpha in hepatic carcinoma cell migration and invasion. Tumour Biol 2015;36:4309-17.

140. Pittala S, Krelin Y, Shoshan-Barmatz V. Targeting liver cancer and associated pathologies in mice with a mitochondrial VDAC1-based peptide. Neoplasia 2018;20:594-609.

141. Guerra MT, Florentino RM, Franca A, Lima Filho AC, Dos Santos ML, et al. Expression of the type 3 InsP3 receptor is a final common event in the development of hepatocellular carcinoma. Gut 2019;68:1676-87.

142. Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma. Semin Diagn Pathol 2017;34:153-9.

143. Stühmer W, Alves F, Hartung F, Zientkowska M, Pardo LA. Potassium channels as tumour markers. FEBS Lett 2006;580:2850-2.

144. Black JA, Waxman SG. Noncanonical roles of voltage-gated sodium channels. Neuron 2013;80:280-91.

145. Downie BR, Sánchez A, Knötgen H, Contreras-Jurado C, Gymnopoulos M, et al. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 2008;283:36234-40.

146. Buchanan PJ, McCloskey KD. CaV channels and cancer: canonical functions indicate benefits of repurposed drugs as cancer therapeutics. Eur Biophys J 2016;45:621-33.

147. Lee H, Kang S, Kim W. Drug repositioning for cancer therapy based on large-scale drug-induced transcriptional signatures. PloS One 2016;11:e0150460.

148. Ellegaard AM, Dehlendorff C, Vind AC, Anand A, Cederkvist L, et al. Repurposing cationic amphiphilic antihistamines for cancer treatment. EBioMedicine 2016;9:130-9.

Hepatoma Research
ISSN 2454-2520 (Online) 2394-5079 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/