REFERENCES
3. Bennett CW, Berchem G, Kim YJ, El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 2016;7:71013-35.
4. Luthra R, Chen H, Roy-Chowdhuri S, Singh RR. Next-generation sequencing in clinical molecular diagnostics of cancer: advantages and challenges. Cancers (Basel) 2015;7:2023-36.
5. Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet 2018;50:645-51.
6. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455:1069-75.
7. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011;333:1157-60.
8. Santarpia L, Bottai G, Kelly CM, Gyorffy B, Szekely B, et al. Deciphering and targeting oncogenic mutations and pathways in breast cancer. Oncologist 2016;21:1063-78.
9. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014;158:929-44.
10. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018;174:1034-5.
11. Cohen MH, Williams G, Johnson JR, Duan J, Gobburu J, et al. Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 2002;8:935-42.
12. Kazandjian D, Blumenthal GM, Chen HY, He K, Patel M, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist 2014;19:e5-11.
13. Rodriguez-Canales J, Parra-Cuentas E, Wistuba II. Diagnosis and molecular classification of lung cancer. Cancer Treat Res 2016;170:25-46.
14. Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch 2014;465:1-14.
15. Heestand GM, Kurzrock R. Molecular landscape of pancreatic cancer: implications for current clinical trials. Oncotarget 2015;6:4553-61.
16. Offin M, Liu D, Drilon A. Tumor-agnostic drug development. Am Soc Clin Oncol Educ Book 2018;38:184-7.
17. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res 2019;25:3753-8.
18. Kummar S, Lassen UN. TRK Inhibition: a new tumor-agnostic treatment strategy. Target Oncol 2018;13:545-56.
21. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271-82.
22. Schram AM, Chang MT, Jonsson P, Drilon A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 2017;14:735-48.
23. Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019;10:2095-111.
24. Nakanishi Y, Akiyama N, Tsukaguchi T, Fujii T, Satoh Y, et al. Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Mol Cancer Ther 2015;14:704-12.
25. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960;25:85-109.
26. Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987;328:170-2.
27. Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep 2018;23:227-38.e3.
29. Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol Cell 2015;107:111-29.
30. Farago AF, Azzoli CG. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small cell lung cancer. Transl Lung Cancer Res 2017;6:550-9.
31. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010;363:1693-703.
32. Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol 2013;14:590-8.
33. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014;370:1189-97.
34. Ou SH, Weitz M, Jalas JR, Kelly DF, Wong V, et al. Alectinib induced CNS radiation necrosis in an ALK+NSCLC patient with a remote (7 years) history of brain radiation. Lung Cancer 2016;96:15-8.
35. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012;18:378-81.
36. Lamarca A, Barriuso J, McNamara MG, Valle JW. Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol 2020; doi: 10.1016/j.jhep.2020.03.007.
37. Yu YP, Liu P, Nelson J, Hamilton RL, Bhargava R, et al. Identification of recurrent fusion genes across multiple cancer types. Sci Rep 2019;9:1074.
38. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013;31:1023-31.
39. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1995;267:316-7.
40. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561-6.
41. Hillier K, Hughes A, Shamberger RC, Shusterman S, Perez-Atayde AR, et al. A novel ALK fusion in pediatric medullary thyroid carcinoma. Thyroid 2019;29:1704-7.
42. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382-4.
43. Debelenko LV, Raimondi SC, Daw N, Shivakumar BR, Huang D, et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011;24:430-42.
44. Du XL, Hu H, Lin DC, Xia SH, Shen XM, et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med (Berl) 2007;85:863-75.
45. Wiesner T, He J, Yelensky R, Esteve-Puig R, Botton T, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun 2014;5:3116.
46. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 2013;3:636-47.
47. Lamballe F, Klein R, Barbacid M. The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 1991;22:153-70.
48. Light JE, Koyama H, Minturn JE, Ho R, Simpson AM, et al. Clinical significance of NTRK family gene expression in neuroblastomas. Pediatr Blood Cancer 2012;59:226-32.
49. Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, et al. Oncogenes in solid human tumours. Nature 1982;300:539-42.
50. Lee SJ, Li GG, Kim ST, Hong ME, Jang J, et al. NTRK1 rearrangement in colorectal cancer patients: evidence for actionable target using patient-derived tumor cell line. Oncotarget 2015;6:39028-35.
51. Haller F, Knopf J, Ackermann A, Bieg M, Kleinheinz K, et al. Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol 2016;238:700-10.
52. Agaram NP, Zhang L, Sung YS, Chen CL, Chung CT, et al. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol 2016;40:1407-16.
53. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014;46:444-50.
54. Shim HS, Kenudson M, Zheng Z, Liebers M, Cha YJ, et al. Unique genetic and survival characteristics of invasive mucinous adenocarcinoma of the lung. J Thorac Oncol 2015;10:1156-62.
55. Sozzi G, Bongarzone I, Miozzo M, Cariani CT, Mondellini P, et al. Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chromosomes Cancer 1992;5:212-8.
56. Wei G, Patel R, Walsh C, Barrera M, Fagan P, et al. Entrectinib, a highly potent pan-Trk, ROS1, and ALK inhibitor, has broad-spectrum, histology-agnostic anti-tumor activity in molecularly defined cancers. Eur J Cancer 2016;69:S33.
57. Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 2001;169:107-14.
58. Thiele CJ, Li Z, McKee AE. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 2009;15:5962-7.
59. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 2015;5:25-34.
60. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013;45:927-32.
61. Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 1999;93:1355-63.
62. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014;371:1005-15.
63. Forghieri F, Morselli M, Potenza L, Maccaferri M, Pedrazzi L, et al. Chronic eosinophilic leukaemia with ETV6-NTRK3 fusion transcript in an elderly patient affected with pancreatic carcinoma. Eur J Haematol 2011;86:352-5.
64. Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, et al. Analysis of NTRK Alterations in Pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol 2018; doi: 10.1200/PO.18.00183.
66. Solomon JP, Benayed R, Hechtman JF, Ladanyi M. Identifying patients with NTRK fusion cancer. Ann Oncol 2019;30:viii16-22.
67. Li G, Kim ST, Kim KM, Lee J, Russo M, et al. Abstract A173: potent anti-tumor activity of entrectinib in patient-derived models harboring oncogenic gene rearrangements of NTRKs. Mol Cancer Ther 2015;14:A173.
68. Stumpfova M, Janne PA. Zeroing in on ROS1 rearrangements in non-small cell lung cancer. Clin Cancer Res 2012;18:4222-4.
69. Davies KD, Doebele RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013;19:4040-5.
70. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012;30:863-70.
71. Pan Y, Zhang Y, Li Y, Hu H, Wang L, et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 2014;84:121-6.
72. Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A 1987;84:9270-4.
73. Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, et al. Rare but recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin Cancer Res 2018;24:6471-82.
74. Peraldo Neia C, Cavalloni G, Balsamo A, Venesio T, Napoli F, et al. Screening for the FIG-ROS1 fusion in biliary tract carcinomas by nested PCR. Genes Chromosomes Cancer 2014;53:1033-40.
75. Lee J, Lee SE, Kang SY, Do IG, Lee S, et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 2013;119:1627-35.
76. Aisner DL, Nguyen TT, Paskulin DD, Le AT, Haney J, et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res 2014;12:111-8.
77. Shaw AT, Hsu PP, Awad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer 2013;13:772-87.
79. Neel DS, Allegakoen DV, Olivas V, Mayekar MK, Hemmati G, et al. Differential subcellular localization regulates oncogenic signaling by ROS1 kinase fusion proteins. Cancer Res 2019;79:546-56.
80. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 2007;7:233-45.
81. He Y, Sheng W, Hu W, Lin J, Liu J, et al. Different types of ROS1 fusion partners yield comparable efficacy to Crizotinib. Oncol Res 2019;27:901-10.
82. Davare MA, Saborowski A, Eide CA, Tognon C, Smith RL, et al. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc Natl Acad Sci U S A 2013;110:19519-24.
83. Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol 2016;27 Suppl 3:iii4-15.
84. Li G, Dai WR, Shao FC. Effect of ALK-inhibitors in the treatment of non-small cell lung cancer: a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 2017;21:3496-503.
85. Schoffski P, Sufliarsky J, Gelderblom H, Blay JY, Strauss SJ, et al. Abstract CT045: Prospective precision medicine trial of crizotinib (C) in patients (pts) with advanced, inoperable inflammatory myofibroblastic tumor (IMFT) with and without ALK alterations: EORTC phase II study 90101 “CREATE”. Cancer Res 2018;78:CT045.
86. Porta R, Borea R, Coelho A, Khan S, Araujo A, et al. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit Rev Oncol Hematol 2017;113:256-67.
87. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 2016;22:259-67.
88. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 2017;17:318-32.
89. Borad MJ, Gores GJ, Roberts LR. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Curr Opin Gastroenterol 2015;31:264-8.
90. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 2014;59:1427-34.
91. Jain A, Kwong LN, Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options Oncol 2016;17:58.
92. Sia D, Losic B, Moeini A, Cabellos L, Hao K, et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat Commun 2015;6:6087.
93. Parker BC, Engels M, Annala M, Zhang W. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol 2014;232:4-15.
94. Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7:252-63.
95. Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 2019;16:105-22.
96. Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol 2018;36:276-82.
97. Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1-3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov 2018;8:812-21.
98. Javle M, Kelley R, Roychowdhury S, Weiss K, Abou-Alfa G, et al. LBA28Updated results from a phase II study of infigratinib (BGJ398), a selective pan-FGFR kinase inhibitor, in patients with previously treated advanced cholangiocarcinoma containing FGFR2 fusions. Ann Oncol 2018;29.
99. Hollebecque A, Borad M, Sahai V, Catenacci DVT, Murphy A, et al. Interim results of fight-202, a phase II, open-label, multicenter study of INCB054828 in patients (pts) with previously treated advanced/metastatic or surgically unresectable cholangiocarcinoma (CCA) with/without fibroblast growth factor (FGF)/FGF receptor (FGFR) genetic alterations. Ann Oncol 2018;29:viii258.
100. Park JO, Feng YH, Chen YY, Su WC, Oh DY, et al. Updated results of a phase IIa study to evaluate the clinical efficacy and safety of erdafitinib in Asian advanced cholangiocarcinoma (CCA) patients with FGFR alterations. J Clin Oncol 2019;37:4117.
101. Meric-Bernstam F, Arkenau H, Tran B, Bahleda R, Kelley R, et al. Efficacy of TAS-120, an irreversible fibroblast growth factor receptor (FGFR) inhibitor, in cholangiocarcinoma patients with FGFR pathway alterations who were previously treated with chemotherapy and other FGFR inhibitors. Ann Oncol 2018;29:v100.
102. Li G, Krook M, Roychowdhury S, Avogadri F, Ye Y, et al. Abstract 2206: anti-tumor activity of infigratinib, a potent and selective inhibitor of FGFR1, FGFR2 and FGFR3, in FGFR fusion-positive cholangiocarcinoma and other solid tumors. Cancer Res 2019;79:2206.
103. Nauseef JT, Villamar DM, Lebenthal J, Vlachostergios PJ, Tagawa ST. An evaluation of the efficacy and safety of erdafitinib for the treatment of bladder cancer. Expert Opin Pharmacother 2020:1-8.
104. Dizman N, Rosenberg JE, Hoffman-Censits JH, Quinn DI, Petrylak DP, et al. Infigratinib in upper tract urothelial carcinoma vs urothelial carcinoma of the bladder and association with comprehensive genomic profiling/cell-free DNA results. J Clin Oncol 2019;37:4510.
105. Takahashi M, Cooper GM. Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 1987;7:1378-85.
106. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002;3:383-94.
108. Kohno T, Tsuta K, Tsuchihara K, Nakaoku T, Yoh K, et al. RET fusion gene: translation to personalized lung cancer therapy. Cancer Sci 2013;104:1396-400.
109. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 2001;15:2433-44.
110. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 2009;17:199-209.
111. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990;60:557-63.
112. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006;6:292-306.
113. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012;22:436-45.
114. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511:543-50.
115. Tsuta K, Kohno T, Yoshida A, Shimada Y, Asamura H, et al. RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis. Br J Cancer 2014;110:1571-8.
116. Wang R, Hu H, Pan Y, Li Y, Ye T, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012;30:4352-9.
117. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, et al. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res 2017;23:1988-97.
118. Chao BH, Briesewitz R, Villalona-Calero MA. RET fusion genes in non-small-cell lung cancer. J Clin Oncol 2012;30:4439-41.
119. Ferrara R, Auger N, Auclin E, Besse B. Clinical and translational implications of RET rearrangements in non-small cell lung cancer. J Thorac Oncol 2018;13:27-45.
120. Plenker D, Riedel M, Bragelmann J, Dammert MA, Chauhan R, et al. Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors. Sci Transl Med 2017;9.
121. Stransky N, Cerami E, Schalm S, Kim JL, Lengauer C. The landscape of kinase fusions in cancer. Nat Commun 2014;5:4846.
122. Le Rolle AF, Klempner SJ, Garrett CR, Seery T, Sanford EM, et al. Identification and characterization of RET fusions in advanced colorectal cancer. Oncotarget 2015;6:28929-37.
123. Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, et al. .
124. Li GG, Somwar R, Joseph J, Smith RS, Hayashi T, et al. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin Cancer Res 2017;23:2981-90.
125. Matsubara D, Kanai Y, Ishikawa S, Ohara S, Yoshimoto T, et al. Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol 2012;7:1872-6.
126. Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, et al. .
127. Guo R, Schreyer M, Chang JC, Rothenberg SM, Henry D, et al. Response to selective RET inhibition with LOXO-292 in a patient with RET fusion-positive lung cancer with leptomeningeal metastases. JCO Precis Oncol 2019;3.
128. Drilon A, Oxnard G, Wirth L, Besse B, Gautschi O, et al. PL02.08 registrational results of LIBRETTO-001: a phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. J Thorac Oncol 2019;14:S6-7.
129. Gainor JF, Lee DH, Curigliano G, Doebele RC, Kim DW, et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion+ non-small cell lung cancer (NSCLC). J Clin Oncol 2019;37:9008.
130. Lacombe D, Burock S, Bogaerts J, Schoeffski P, Golfinopoulos V, et al. The dream and reality of histology agnostic cancer clinical trials. Mol Oncol 2014;8:1057-63.
131. Chu P, Batson S, Hodgson M, Mitchell CR, Steenrod A. Systematic review of neurotrophic tropomyosin-related kinase inhibition as a tumor-agnostic management strategy. Future Oncol 2020;16:61-74.
132. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
133. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507-16.
134. Kim YS, Kim JS, Bae JS, Park WC. Clinical implication of the BRAFV600E mutation in papillary thyroid carcinoma. World J Surg Oncol 2013;11:99.
135. Kopetz S, Desai J, Chan E, Hecht JR, O’Dwyer PJ, et al. Phase II pilot study of vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol 2015;33:4032-8.