REFERENCES

1. Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - resolving FACTual issues. Biochim Biophys Acta Gene Regul Mech 2018. Epub ahead of print. doi: 10.1016/j.bbagrm.2018.07.008

2. LeRoy G, Orphanides G, Lane WS, Reinberg D. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 1998;282:1900-4.

3. Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 1998;92:105-16.

4. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, et al. FACT facilitates transcription-dependent nucleosome alteration. Science 2003;301:1090-3.

5. Mason PB, Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 2003;23:8323-33.

6. Saunders A, Werner J, Andrulis ED, Nakayama T, Hirose S, et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 2003;301:1094-6.

7. Hsieh FK, Kulaeva OI, Patel SS, Dyer PN, Luger K, et al. Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A 2013;110:7654-9.

8. Orphanides G, Wu WH, Lane WS, Hampsey M, Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 1999;400:284-8.

9. Wittmeyer J, Formosa T. The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Mol Cell Biol 1997;17:4178-90.

10. Tan BC, Chien CT, Hirose S, Lee SC. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 2006;25:3975-85.

11. Abe T, Sugimura K, Hosono Y, Takami Y, Akita M, et al. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates. J Biol Chem 2011;286:30504-12.

12. Yang J, Zhang X, Feng J, Leng H, Li S, et al. The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep 2016;14:1128-41.

13. Kurat CF, Yeeles JTP, Patel H, Early A, Diffley JFX. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell 2017;65:117-30.

14. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, et al. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 2001;7:283-92.

15. Krohn NM, Stemmer C, Fojan P, Grimm R, Grasser KD. Protein kinase CK2 phosphorylates the high mobility group domain protein SSRP1, inducing the recognition of UV-damaged DNA. J Biol Chem 2003;278:12710-5.

16. Heo K, Kim H, Choi SH, Choi J, Kim K, et al. FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol Cell 2008;30:86-97.

17. Charles Richard JL, Shukla MS, Menoni H, Ouararhni K, Lone IN, et al. FACT assists base excision repair by boosting the remodeling activity of RSC. PLoS Genet 2016;12:e1006221.

18. Murawska M, Ladurner AG. CENPs and sweet nucleosomes face the FACT. Trends Biochem Sci 2016;41:736-8.

19. Prendergast L, Muller S, Liu Y, Huang H, Dingli F, et al. The CENP-T/-W complex is a binding partner of the histone chaperone FACT. Genes Dev 2016;30:1313-26.

20. Winkler DD, Luger K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 2011;286:18369-74.

21. Evans DR, Brewster NK, Xu Q, Rowley A, Altheim BA, et al. The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain. Genetics 1998;150:1393-405.

22. Brewster NK, Johnston GC, Singer RA. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol 2001;21:3491-502.

23. Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, et al. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J 2001;20:3506-17.

24. McCullough LL, Connell Z, Xin H, Studitsky VM, Feofanov AV, et al. Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization. J Biol Chem 2018;293:6121-33.

25. Stuwe T, Hothorn M, Lejeune E, Rybin V, Bortfeld M, et al. The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc Natl Acad Sci U S A 2008;105:8884-9.

26. Hondele M, Stuwe T, Hassler M, Halbach F, Bowman A, et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 2013;499:111-4.

27. Kemble DJ, Whitby FG, Robinson H, McCullough LL, Formosa T, et al. Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT. J Biol Chem 2013;288:10188-94.

28. Kemble DJ, McCullough LL, Whitby FG, Formosa T, Hill CP. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs. Mol Cell 2015;60:294-306.

29. Wang T, Liu Y, Edwards G, Krzizike D, Scherman H, et al. The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci Alliance 2018;1:e201800107.

30. Valieva ME, Armeev GA, Kudryashova KS, Gerasimova NS, Shaytan AK, et al. Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 2016;23:1111-6.

31. Chang HW, Valieva ME, Safina A, Chereji RV, Wang J, et al. Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins. Sci Adv 2018;4:eaav2131.

32. Valieva ME, Gerasimova NS, Kudryashova KS, Kozlova AL, Kirpichnikov MP, et al. Stabilization of nucleosomes by histone tails and by FACT revealed by spFRET microscopy. Cancers (Basel) 2017;9.

33. Hondele M, Ladurner AG. Catch me if you can: how the histone chaperone FACT capitalizes on nucleosome breathing. Nucleus 2013;4:443-9.

34. Safina A, Cheney P, Pal M, Brodsky L, Ivanov A, et al. FACT is a sensor of DNA torsional stress in eukaryotic cells. Nucleic Acids Res 2017;45:1925-45.

35. Gasparian AV, Burkhart CA, Purmal AA, Brodsky L, Pal M, et al. Curaxins: anticancer compounds that simultaneously suppress NF-kappaB and activate p53 by targeting FACT. Sci Transl Med 2011;3:95ra74.

36. Li Y, Keller DM, Scott JD, Lu H. CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity. J Biol Chem 2005;280:11869-75.

37. Tsunaka Y, Toga J, Yamaguchi H, Tate S, Hirose S, et al. Phosphorylated intrinsically disordered region of FACT masks its nucleosomal DNA binding elements. J Biol Chem 2009;284:24610-21.

38. Tsunaka Y, Fujiwara Y, Oyama T, Hirose S, Morikawa K. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes Dev 2016;30:673-86.

39. Gurova KV. Chromatin stability as a target for cancer treatment. Bioessays 2019;41:e1800141.

40. Nesher E, Safina A, Aljahdali I, Portwood S, Wang ES, et al. Role of chromatin damage and chromatin trapping of FACT in mediating the anticancer cytotoxicity of DNA-binding small-molecule drugs. Cancer Res 2018;78:1431-43.

41. Burkhart C, Fleyshman D, Kohrn R, Commane M, Garrigan J, et al. Curaxin CBL0137 eradicates drug resistant cancer stem cells and potentiates efficacy of gemcitabine in preclinical models of pancreatic cancer. Oncotarget 2014;5:11038-53.

42. Carter DR, Murray J, Cheung BB, Gamble L, Koach J, et al. Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci Transl Med 2015;7:312ra176.

43. Dermawan JK, Hitomi M, Silver DJ, Wu Q, Sandlesh P, et al. Pharmacological targeting of the histone chaperone complex FACT preferentially eliminates glioblastoma stem cells and prolongs survival in preclinical models. Cancer Res 2016;76:2432-42.

44. Kim M, Neznanov N, Wilfong CD, Fleyshman DI, Purmal AA, et al. Preclinical validation of a single-treatment infusion modality that can eradicate extremity melanomas. Cancer Res 2016;76:6620-30.

45. Maluchenko NV, Chang HW, Kozinova MT, Valieva ME, Gerasimova NS, et al. Inhibiting the pro-tumor and transcription factor FACT: mechanisms. Mol Biol (Mosk) 2016;50:599-610.

46. Kantidze OL, Luzhin AV, Nizovtseva EV, Safina A, Valieva ME, et al. The anti-cancer drugs curaxins target spatial genome organization. Nat Commun 2019;10:1441.

47. Leonova K, Safina A, Nesher E, Sandlesh P, Pratt R, et al. TRAIN (transcription of repeats activates INterferon) in response to chromatin destabilization induced by small molecules in mammalian cells. Elife 2018;7.

48. Formosa T. The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 2013;1819:247-55.

49. Mylonas C, Tessarz P. Transcriptional repression by FACT is linked to regulation of chromatin accessibility at the promoter of ES cells. Life Sci Alliance 2018;1:e201800085.

50. Kolundzic E, Ofenbauer A, Bulut SI, Uyar B, Baytek G, et al. FACT sets a barrier for cell fate reprogramming in caenorhabditis elegans and human cells. Dev Cell 2018;46:611-26.

51. Sandlesh P, Juang T, Safina A, Higgins MJ, Gurova KV. Uncovering the fine print of the CreERT2-LoxP system while generating a conditional knockout mouse model of Ssrp1 gene. PLoS One 2018;13:e0199785.

52. True JD, Muldoon JJ, Carver MN, Poorey K, Shetty SJ, et al. The modifier of transcription 1 (Mot1) ATPase and Spt16 histone chaperone co-regulate transcription through preinitiation complex assembly and nucleosome organization. J Biol Chem 2016;291:15307-19.

53. Tettey TT, Gao X, Shao W, Li H, Story BA, et al. A role for FACT in RNA polymerase II promoter-proximal pausing. Cell Rep 2019;27:3770-9.

54. Malone EA, Clark CD, Chiang A, Winston F. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol Cell Biol 1991;11:5710-7.

55. Chen P, Dong L, Hu M, Wang YZ, Xiao X, et al. Functions of FACT in breaking the nucleosome and maintaining its integrity at the single-nucleosome level. Mol Cell 2018;71:284-93.

56. Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 2003;301:1096-9.

57. Duina AA, Rufiange A, Bracey J, Hall J, Nourani A, et al. Evidence that the localization of the elongation factor Spt16 across transcribed genes is dependent upon histone H3 integrity in Saccharomyces cerevisiae. Genetics 2007;177:101-12.

58. Jamai A, Puglisi A, Strubin M. Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase. Mol Cell 2009;35:377-83.

59. Hainer SJ, Charsar BA, Cohen SB, Martens JA. Identification of mutant versions of the Spt16 histone chaperone that are defective for transcription-coupled nucleosome occupancy in saccharomyces cerevisiae. G3 (Bethesda) 2012;2:555-67.

60. Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 2002;277:50206-13.

61. Dinant C, Ampatziadis-Michailidis G, Lans H, Tresini M, Lagarou A, et al. Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol Cell 2013;51:469-79.

62. Kari V, Shchebet A, Neumann H, Johnsen SA. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair. Cell Cycle 2011;10:3495-504.

63. Gao Y, Li C, Wei L, Teng Y, Nakajima S, et al. SSRP1 cooperates with PARP and XRCC1 to facilitate single-strand DNA break repair by chromatin priming. Cancer Res 2017;77:2674-85.

64. Donnell AF, Brewster NK, Kurniawan J, Minard LV, Johnston GC, et al. Domain organization of the yeast histone chaperone FACT: the conserved N-terminal domain of FACT subunit Spt16 mediates recovery from replication stress. Nucleic Acids Res 2004;32:5894-906.

65. Herrera-Moyano E, Mergui X, Garcia-Rubio ML, Barroso S, Aguilera A. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts. Genes Dev 2014;28:735-48.

66. Cao S, Bendall H, Hicks GG, Nashabi A, Sakano H, et al. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos. Mol Cell Biol 2003;23:5301-7.

67. Koltowska K, Apitz H, Stamataki D, Hirst EM, Verkade H, et al. Ssrp1a controls organogenesis by promoting cell cycle progression and RNA synthesis. Development 2013;140:1912-8.

68. Duroux M, Houben A, Ruzicka K, Friml J, Grasser KD. The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome. Plant J 2004;40:660-71.

69. Lolas IB, Himanen K, Gronlund JT, Lynggaard C, Houben A, et al. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant J 2010;61:686-97.

70. Lolis AA, Londhe P, Beggs BC, Byrum SD, Tackett AJ, et al. Myogenin recruits the histone chaperone facilitates chromatin transcription (FACT) to promote nucleosome disassembly at muscle-specific genes. J Biol Chem 2013;288:7676-87.

71. Hossan T, Nagarajan S, Baumgart SJ, Xie W, Magallanes RT, et al. Histone chaperone SSRP1 is essential for Wnt signaling pathway activity during osteoblast differentiation. Stem Cells 2016;34:1369-76.

72. Hertel L, De Andrea M, Bellomo G, Santoro P, Landolfo S, et al. The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Res 1999;250:313-28.

73. Xiang YY, Wang DY, Tanaka M, Igarashi H, Naito Y, et al. Expression of structure-specific recognition protein mRNA in fetal kidney and Fe-nitrilotriacetate-induced renal carcinoma in the rat. Cancer Lett 1996;106:271-8.

74. Garcia H, Fleyshman D, Kolesnikova K, Safina A, Commane M, et al. Expression of FACT in mammalian tissues suggests its role in maintaining of undifferentiated state of cells. Oncotarget 2011;2:783-96.

75. Safina A, Garcia H, Commane M, Guryanova O, Degan S, et al. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells. Cell Cycle 2013;12:2423-34.

76. Shen Z, Formosa T, Tantin D. FACT inhibition blocks induction but not maintenance of pluripotency. Stem Cells Dev 2018;27:1693-701.

77. Garcia H, Miecznikowski JC, Safina A, Commane M, Ruusulehto A, et al. Facilitates chromatin transcription complex is an “accelerator” of tumor transformation and potential marker and target of aggressive cancers. Cell Rep 2013;4:159-73.

78. Fleyshman D, Prendergast L, Safina A, Paszkiewicz G, Commane M, et al. Level of FACT defines the transcriptional landscape and aggressive phenotype of breast cancer cells. Oncotarget 2017;8:20525-42.

79. Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A 2007;104:17494-9.

80. Koman IE, Commane M, Paszkiewicz G, Hoonjan B, Pal S, et al. Targeting FACT complex suppresses mammary tumorigenesis in Her2/neu transgenic mice. Cancer Prev Res (Phila) 2012;5:1025-35.

81. Matysiak J, Lesbats P, Mauro E, Lapaillerie D, Dupuy JW, et al. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration. Retrovirology 2017;14:39.

82. Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A. Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol 2011;85:3187-202.

83. Jean MJ, Zhou D, Fiches G, Kong W, Huang H, et al. Curaxin CBL0137 has the potential to reverse HIV-1 latency. J Med Virol 2019;91:1571-6.

84. Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci U S A 2005;102:17448-53.

85. Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res 2004;64:1951-8.

86. Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell 2016;164:1110-21.

87. Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 2001;18:1161-7.

88. Koschmann C, Nunez FJ, Mendez F, Brosnan-Cashman JA, Meeker AK, et al. Mutated chromatin regulatory factors as tumor drivers in cancer. Cancer Res 2017;77:227-33.

89. Nacev BA, Feng L, Bagert JD, Lemiesz AE, Gao J, et al. The expanding landscape of “oncohistone” mutations in human cancers. Nature 2019;567:473-8.

90. Barman P, Reddy D, Bhaumik SR. Mechanisms of antisense transcription initiation with implications in gene expression, genomic integrity and disease pathogenesis. Noncoding RNA 2019;5.

91. Modur V, Singh N, Mohanty V, Chung E, Muhammad B, et al. Defective transcription elongation in a subset of cancers confers immunotherapy resistance. Nat Commun 2018;9:4410.

92. Wade JT, Grainger DC. Spurious transcription and its impact on cell function. Transcription 2018;9:182-9.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/