REFERENCES

1. Darbre PD. Endocrine disruption and human health. New York: Elsevier; 2015.

2. Miller WR. Estrogen and Breast Cancer. London: Chapman and Hall; 1996.

3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.

4. Darbre PD. Molecular mechanisms of oestrogen action on growth of human breast cancer cells in culture. Horm Mol Biol Clin Invest 2012;9:65-95.

5. Engstrom W, Darbre P, Eriksson S, Gulliver L, Hultman T, et al. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signaling. Carcinogenesis 2015;36:S38-S60.

6. Russo J, Russo IH. The role of estrogen in the initiation of breast cancer. J Steroid Biochem Molec Biol 2006;102:89-96.

7. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017;168:670-91.

8. Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017;97:1045-87.

9. Barton M, Filardo EJ, Lolait SJ, Thomas P, Magglioni M, et al. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. J Ster Biochem Molec Biol 2018;176:4-15.

10. Nair S, Sachdeva G. Estrogen matters in metastasis. Steroids 2018;38:108-16.

11. Price JE, Zhang RD. Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev 1990;8:285-97.

12. Ye Y, Xiao Y, Wang W, Yearsley K, Gao JX, et al. ER signaling through slug regulates E-cadherin and EMT. Oncogene 2010;29:1451-62.

13. Planas-Silva MD, Waltz PK. Estrogen promotes reversible epithelial-to-mesenchymal transition and collective motility in MCF-7 breast cancer cells. J Steroid Biochem Molec Biol 2007;104:11-21.

14. Li Y, Wang JP, Santen RJ, Kim TH, Park H, et al. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinol 2010;151:5146-56.

15. Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, et al. Estrogen receptor-promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol Endocrinol 2010;24:2114-25.

16. Kohrmann A, Kammerer U, Kapp M, Dietl J, Anaker J. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature. BMC Cancer 2009;9:188.

17. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010;141:52-67.

18. Dian D, Heublein S, Wiest I, Barthell L, Friese K, et al. Significance of the tumor protease cathepsin D for the biology of breast cancer. Histol Histopathol 2014;29:433-8.

19. Morisset M, Capony F, Rochefort H. The 52-kDa estrogen-induced protein secreted by MCF7 cells is a lysosomal acidic protease. Biochem Biophys Res Commun 1986;138:102-9.

20. Takei H, Lee ES, Jordan VC. In vitro regulation of vascular endothelial growth factor by estrogens and antiestrogens in estrogen-receptor positive breast cancer. Breast Cancer 2002;9:39.

21. Hyder SM, Nawaz Z, Chiappetta C, Stancel GM. Identification of functional estrogen response elements in the gene encoding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res 2000;60:3183-90.

22. Dabrosin C, Palmer K, Muller WJ, Gaudlie J. Esradiol promotes growth and angiogenesis in polyoma middle T transgenic mouse mammary tumor explants. Breast Cancer Res Treat 2003;78:1-6.

23. Dabrosin C, Margetts PJ, Gauldie J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int J Cancer 2003;107:535-40.

24. Office of National Statistics, England. Series MB1, Published Crown Copyright, London. from 1979 to 2014 (MBseries 1 numbered to 43).

25. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;133:571-3.

26. Barr L, Metaxas G, Harbach CAJ, Savoy LA, Darbre PD. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum. J Appl Toxicol 2012;32:219-32.

27. Byford JR, Shaw LE, Drew MGB, Pope GS, Sauer MJ, et al. Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Molec Biol 2002;80:49-60.

28. Wright JV, Schliesman B, Robinson L. Comparative measurements of serum estriol, estradiol, and estrone in non-pregnant, premenopausal women: a preliminary investigation. Alt Med Rev 1999;4:266-70.

29. Charles AK, Darbre PD. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells. J Appl Toxicol 2013;33:390-8.

30. Khanna S, Dash PR, Darbre PD. Exposure to parabens at the concentration of maximal proliferative response increases migratory and invasive activity of human breast cancer cells in vitro. J Appl Toxicol 2014;34:1051-9.

31. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, et al. In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 2001;109:239-44.

32. Hoffmann K, Laperre J, Avermaete A, Altmeyer P, Gambichler T. Defined UV protection by apparel textiles. Arch Dermatol 2001;137:1089-94.

33. Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci Total Environ 2017;595:601-14.

34. Barr L, Alamer M, Darbre PD. Measurement of concentrations of four chemical ultraviolet filters in human breast tissue at serial locations across the breast. J Appl Toxicol 2018;38:1112-20.

35. Alamer M, Darbre PD. Effects of exposure to six chemical ultraviolet filters commonly used in personal care products on motility of MCF-7 and MDA-MB-231 human breast cancer cells in vitro. J Appl Toxicol 2018;38:148-59.

36. Darbre PD. Aluminium and the human breast. Morphologie 2016;100:65-74.

37. Exley C, Charles LM, Barr L, Martin C, Polwart A, et al. Aluminium in human breast tissue. J Inorg Biochem 2007;101:1344-6.

38. Mannello F, Tonti GA, Darbre PD. Concentration of aluminium in breast cyst fluids collected from women affected by gross cystic breast disease. J Appl Toxicol 2009;29:1-6.

39. Mannello F, Tonti GA, Medda V, Simone P, Darbre PD. Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients. J Appl Toxicol 2011;31:262-9.

40. Darbre PD. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol 2006;26:191-7.

41. Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Biochem 2005;99:1912-9.

42. Darbre PD, Bakir A, Iskakova E. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture. J Inorg Biochem 2013;128:245-9.

43. Bakir A, Darbre PD. Effect of aluminium on migration of oestrogen unresponsive MDA-MB-231 human breast cancer cells in culture. J Inorg Biochem 2015;152:180-5.

44. Mandriota SJ, Tenan M, Ferrari P, Sappino AP. Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells. Int J Cancer 2016;139:2781-90.

45. Dann AB, Hontela A. Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 2011;31:285-311.

46. Gee RH, Charles A, Taylor N, Darbre PD. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J Appl Toxicol 2008;28:78-91.

47. Lee GA, Choi KC, Hwang KA. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ Toxicol Pharmacol 2017;49:48-57.

48. Organisation for Economic Cooperation and Development (OECD). The 2004 OECD List of High Production Volume Chemicals. Environment Directorate, Paris, 2004.

49. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect 2004;112:331-8.

50. Schlumpf M, Kypke K, Wittassek M, Angerer J, Mascher H, et al. Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlorpesticides, PBDEs and PCBs in human milk: Correlation of UV filters with use of cosmetics. Chemosphere 2010;81:1171-83.

51. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 1995;103:582-7.

52. Harris CA, Henttu P, Parker MG, Sumpter JP. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 1997;105:802-11.

53. Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, et al. Phthalates stimulate the epithelial to mesenchymal transition through an HDAC6-dependent mechanism in human breast epithelial stem cells. Toxicol Sci 2012;128:365-76.

54. Wang YC, Tsai CF, Chuang HL, Chang YC, Chen HS, et al. Benzyl butyl phthalate promotes breast cancer stem cell expansion via SPHK1/S1P/S1PR3 signaling. Oncotarget 2016;7:29563-76.

55. Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol 2013;42:132-55.

56. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinol 1993;132:2279-86.

57. Hines EP, Mendola P, von Ehrenstein OS, Ye X, Calafat AM, et al. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reprod Toxicol 2015;54:120-8.

58. Jenkins S, Raghuraman N, Eltoum I, Carpenter M, Russo J, et al. Oral exposure to bisphenol A increases dimethylbenzanthracene-induced mammary cancer in rats. Environ Health Perspect 2009;117:910-915.

59. Lozada KW, Keri RA. Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol Reprod 2011;85:490-7.

60. Jenkins S, Wang J, Eltoum I, Desmond R, Lamartiniere CA. Chronic oral exposure to bisphenol A results in a nonmonotonic dose response in mammary carcinogenesis and metastasis in MMTV-erbB2 mice. Environ Health Perspect 2011;119:1604-9.

61. Zhang XL, Wang HS, Liu N, Ge LC. Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals. Arch Biochem Biophys 2015;585:10-6.

62. Song Y, Washington MK, Crawford HC. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 2010;70:2115-25.

63. Zhang XL, Liu N, Weng SF, Wang HS. Bisphenol A increases the migration and invasion of triple-negative breast cancer cells via oestrogen-related receptor gamma. Basic Clin Pharmacol Toxicol 2016;119:389-95.

64. World Health Organisation. Polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Health Criteria 1989;Number 88.

65. Safe S, Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor cross-talk and mechanisms of action. Chem Res Toxicol 2003;16:807-16.

66. Ikuta T, Kawajiri K. Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor. Exp Cell Res 2006;312:3585-94.

67. Diry M, Tomkiewicz C, Koehle C, Coumoul X, Bock KW, et al. Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene 2006;25:5570-4.

68. Wang T, Wyrick KL, Meadows GG, Wills TB, Vorderstrasse BA. Activation of the aryl hydrocarbon receptor by TCDD inhibits mammary tumor metastasis in a syngeneic mouse model of breast cancer. Toxicol Sci 2011;124:291-8.

69. Zhang S, Kim K, Jin UH, Pfent C, Cao H, et al. Aryl hydrocarbon receptor agonists induce microRNA-335 expression and inhibit lung metastasis of estrogen receptor negative breast cancer cells. Cancer Ther 2012;11:108-18.

70. Woods HF (chairman). Phytoestrogens and health. Crown copyright, 2003.

71. Matsumura A, Ghosh A, Pope GS, Darbre PD. Comparative study of oestrogenic properties of eight phytoestrogens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 2005;94:431-43.

72. Chen J, Thompson LU. Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res Treat 2003;80:163-70.

73. Bao C, Namgung H, Lee J, Park HC, Ko J, et al. Daidzein suppresses tumor necrosis factor-α induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells. J Agric Food Chem 2014;62:3759-67.

74. Zhou R, Xu L, Ye M, Liao M, Du H, et al. Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Horm Metab Res 2014;46:753-60.

75. Yang X, Belosay A, Hartman JA, Song H, Zhang Y, et al. Dietary soy isoflavones increase metastasis to lungs in an experimental model of breast cancer with bone micro-tumors. Clin Exp Metastasis 2015;32:323-33.

76. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocrine Rev 2012;33:378-455.

77. Rajapakse N, Silva E, Kortenkamp A. Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ. Health Perspect 2002;110:917-21.

78. Van Den Berg M, Kypke K, Kotz A, Tritscher A, Lee SY, et al. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit–risk evaluation of breastfeeding. Arch Toxicol 2017;91:83-96.

79. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. The Lancet Oncology 2011;2:133-40.

80. Goodson WH, Lowe L, Carpenter DO, Gilbertson M, Ali AM, et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015;36:254-96.

81. Darbre PD, Fernandez MF. Environmental oestrogens and breast cancer: long-term low-dose effects of mixtures of various chemical combinations. J Epidemiol Commun Health 2013;67:203-5.

82. Darbre PD. Hypothesis: Underarm cosmetics are a cause of breast cancer. Eur J Cancer Prevent 2001;10:389-93.

83. Darbre PD. Underarm cosmetics and breast cancer. J Appl Toxicol 2003;23:89-95.

84. Janjua NR, Mogensen B, Andersson AM, Petersen JH, Henriksen M, et al. Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzilidene) camphor after whole-body topical application and reproductive hormone levels in humans. J Invest Dermatol 2004;123:57-61.

85. Janjua NR, Mortensen GK, Andersson AM, Kongshoj B, Skakkebaek NE, et al. Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans. Environ. Sci Technol 2007;41:5564-70.

86. Calafat AM, Wong LY, Ye X, Reidy JA, Needham LL. Concentrations of the Sunscreen Agent Benzophenone-3in Residents of the United States: National Health and Nutrition Examination Survey 2003-2004. Environ Health Perspect 2008;116:893-7.

87. Sandanger TM, Huber S, Moe MK, Braathen T, Leknes H, et al. Plasma concentrations of parabens in postmenopausal women and self-reported use of personal care products: the NOWAC postgenome study. J Expo Sci Environ Epidemiol 2011;21:595-600.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/