REFERENCES

1. Human papillomavirus and related diseases report. HPV Information Center. Available from: https://hpvcentre.net/statistics/reports/XWX.pdf?t=1571975032537 [Last accessed on 25 Oct 2019].

2. Pouyanfard S, Müller M. Human papillomavirus first and second generation vaccines-current status and future directions. Biol Chem 2017;398:871-89.

3. Takes RP, Wierzbicka M, D’Souza G, Jackowska J, Silver CE, et al. HPV vaccination to prevent oropharyngeal carcinoma: what can be learned from anogenital vaccination programs? Oral Oncol 2015;51:1057-60.

4. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. 2018. Available from: https://gco.iarc.fr/today [Last accessed on 25 Oct 2019].

5. Squarzanti DF, Sorrentino R, Landini MM, Chiesa A, Pinato S, et al. Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: new insights for the virus-induced DNA damage response. Virol J 2018;15:176.

6. Deschler DG, Richmon JD, Khariwala SS, Ferris RL, Wang MB. The “new” head and neck cancer patient-young, nonsmoker, nondrinker, and HPV positive: evaluation. Otolaryngol Head Neck Surg 2014;151:375-80.

7. Sedghizadeh PP, Billington WD, Paxton D, Ebeed R, Mahabady S, et al. Is p16-positive oropharyngeal squamous cell carcinoma associated with favorable prognosis? A systematic review and meta-analysis. Oral Oncol 2016;54:15-27.

8. Nørregaard C, Grønhøj C, Jensen D, Friborg J, Andersen E, et al. Cause-specific mortality in HPV+ and HPV- oropharyngeal cancer patients: insights from a population-based cohort. Cancer Med 2018;7:87-94.

9. Sano D, Oridate N. The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol 2016;21:819-26.

10. Kyrgiou M, Mitra A, Moscicki AB. Does the vaginal microbiota play a role in the development of cervical cancer? Transl Res 2017;179:168-82.

11. Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity 2017;46:562-76.

12. Mitra A, MacIntyre DA, Marchesi JR, Lee YS, Bennett PR, et al. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next? Microbiome 2016;4:58.

13. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep 2015;5:16865.

14. Perera M, Al-Hebshi NN, Speicher DJ, Perera I, Johnson NW. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria. J Oral Microbiol 2016;8:32762.

15. Al-Hebshi NN, Borgnakke WS, Johnson NW. The microbiome of oral squamous cell carcinomas: a functional perspective. Curr Oral Health Rep 2019;6:145-60.

16. Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, et al. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 2019;19:16.

17. Ilhan ZE, Łaniewski P, Thomas N, Roe DJ, Chase DM, et al. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine 2019;44:675-90.

18. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019;20:e47638.

19. Mo Y, Wang Y, Zhang L, Yang L, Zhou M, et al. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 2019;10:3789-97.

20. Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, et al. Extracellular-signal regulated kinase: a central molecule driving epithelial-mesenchymal transition in cancer. Int J Mol Sci 2019;20:e2885.

21. Timaner M, Tsai K, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2019;S1044-579X:30135-X.

22. Cyprian FS, Al-Farsi HF, Vranic S, Akhtar S, Al Moustafa AE. Epstein-barr virus and human papillomaviruses interactions and their roles in the initiation of epithelial-mesenchymal transition and cancer progression. Front Oncol 2018;8:111.

23. Chen X, Bode AM, Dong Z, Cao Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer. FASEB J 2016;30:3001-10.

24. Lefevre M, Rousseau A, Rayon T, Dalstein V, Clavel C, et al. Epithelial to mesenchymal transition and HPV infection in squamous cell oropharyngeal carcinomas: the papillophar study. Br J Cancer 2017;116:362-9.

25. Jiang J, Li X, Yin X, Zhang J, Shi B. Association of low expression of E-cadherin and β-catenin with the progression of early stage human squamous cervical cancer. Oncol Lett 2019;17:5729-39.

26. Su PH, Hsu YW, Huang RL, Chen LY, Chao TK, et al. TET1 promotes 5hmC-dependent stemness, and inhibits a 5hmC-independent epithelial-mesenchymal transition, in cervical precancerous lesions. Cancer Lett 2019;450:53-62.

27. Li MY, Liu JQ, Chen DP, Li ZY, Qi B, et al. p68 prompts the epithelial-mesenchymal transition in cervical cancer cells by transcriptionally activating the TGF-β1 signaling pathway. Oncol Lett 2018;15:2111-6.

28. Pang T, Li M, Zhang Y, Yong W, Kang H, et al. Y box-binding protein 1 promotes epithelial-mesenchymal transition, invasion, and metastasis of cervical cancer via enhancing the expressions of Snail. Int J Gynecol Cancer 2017;27:1753-60.

29. Kwon MJ, Rho YS, Nam ES, Cho SJ, Park HR, et al. Clinical implication of programmed cell death-1 ligand-1 expression in tonsillar squamous cell carcinoma in association with intratumoral heterogeneity, human papillomavirus, and epithelial-to-mesenchymal transition. Hum Pathol 2018;80:28-39.

30. Outh-Gauer S, Alt M, Le Tourneau C, Augustin J, Broudin C, et al. Immunotherapy in head and neck cancers: a new challenge for immunologists, pathologists and clinicians. Cancer Treat Rev 2018;65:54-64.

31. Zandberg DP, Strome SE. The role of the PD-L1: PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol 2014;50:627-32.

32. Ma CT, Luo HS, Gao F, Tang QC, Chen W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett 2018;16:2606-12.

33. Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol 2019;11:1563410.

34. Yan X, Liu L, Li H, Qin H, Sun Z. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco Targets Ther 2017;10:5031-46.

35. Panebianco C, Potenza A, Andriulli A, Pazienza V. Exploring the microbiota to better understand gastrointestinal cancers physiology. Clin Chem Lab Med 2018;56:1400-12.

36. Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018;6:92.

37. Lee J, Roberts JS, Atanasova KR, Chowdhury N, Han K, et al. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, porphyromonas gingivalis. Front Cell Infect Microbiol 2017;7:493.

38. Sztukowska MN, Ojo A, Ahmed S, Carenbauer AL, Wang Q, et al. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell Microbiol 2016;18:844-58.

39. Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018;53:565-74.

40. Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Periodontal pathogens promote epithelial-mesenchymal transition in oral squamous carcinoma cells in vitro. Cell Adh Migr 2018;12:127-37.

41. Sulaiman A, Yao ZM, Wang LS. Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression. J Biomed Res 2018;32:81-90.

42. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 2017;11:28-39.

43. Hofman P, Vouret-Craviari V. Microbes-induced EMT at the crossroad of inflammation and cancer. Gut Microbes 2012;3:176-85.

44. Gopinath D, Menon RK, Banerjee M, Su Yuxiong R, Botelho MG, et al. Culture-independent studies on bacterial dysbiosis in oral and oropharyngeal squamous cell carcinoma: A systematic review. Crit Rev Oncol Hematol 2019;139:31-40.

45. Todaro GJ, Zeve V, Aaronson SA. Cell culture techniques in the search for cancer viruses of man. In Vitro 1971;6:355-61.

46. Taylor-Robinson D. The use of organ cultures and animal models in the study of Mycoplasma pneumoniae infections. Infection 1976;4 (1 Suppl):4-8.

47. Bergmann S, Steinert M. From single cells to engineered and explanted tissues: new perspectives in bacterial infection biology. Inter Rev Cell Mol Biol 2015;319:1-44.

48. Pasupuleti MK, Molahally SS, Salwaji S. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives. J Indian Soc Periodontol 2016;20:360-8.

49. Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, et al. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci 2017;130:203-18.

50. Di Giulio M, Di Valerio V, Bosco D, Marsich E, Cataldi A, et al. Molecular mechanisms driving Streptococcus mitis entry into human gingival fibroblasts in presence of chitlac-nAg and saliva. J Mater Sci Mater Med 2018;29:36.

51. Millhouse E, Jose A, Sherry L, Lappin DF, Patel N, et al. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health 2014;14:80.

52. Spurgeon ME, Lambert PF. Human papillomavirus and the stroma: bidirectional crosstalk during the virus life cycle and carcinogenesis. Viruses 2017;9:E219.

53. Genovese NJ, Broker TR, Chow LT. Non conserved lysine residues attenuate the biological function of the low-risk human papillomavirus E7 protein. J Virol 2011;85:5546-54.

54. Banerjee NS, Wang HK, Broker TR, Chow LT. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem 2011;286:15473-82.

55. Chow MT, Luster AD. Chemokines in cancer. Cancer Immunol Res 2014;2:1125-31.

56. Bradbury P, Fabry B, O’Neill GM. Occupy tissue: the movement in cancer metastasis. Cell Adh Migr 2012;6:424-32.

57. Hogervorst M, Rietveld M, de Gruijl F, El Ghalbzouri A. A shift from papillary to reticular fibroblasts enables tumour-stroma interaction and invasion. Br J Cancer 2018;118:1089-97.

58. Fullar A, Dudas J, Olah L, Hollosi P, Papp Z, et al. Remodeling of extracellular matrix by normal and tumor-associated . broblasts promotes cervical cancer progression. BMC Cancer 2015;15:256.

59. de Carvalho Dias K, de Sousa DL, Barbugli PA, Cerri PS, Salih VM, et al. Development and characterization of a 3D oral mucosa model as a tool for host-pathogen interactions. J Microbiol Methods 2018;152:52-60.

60. Zhang M, Rose B, Lee CS, Hong AM. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines. Cancer Biol Ther 2015;16:1231-40.

61. Sawant S, Dongre H, Singh AK, Joshi S, Costea DE, et al. Establishment of 3D co-culture models from different stages of human tongue tumorigenesis: utility in understanding neoplastic progression. PLoS Onep 2016;11:e0160615.

62. Dabija-Wolter G, Sapkota D, Cimpan MR, Neppelberg E, Bakken V, et al. Limited in-depth invasion of Fusobacterium nucleatum into in vitro reconstructed human gingiva. Arch Oral Biol 2012;57:344-51.

63. Agarwal V, Kuchipudi A, Fulde M, Riesbeck K, Bergmann S, et al. Streptococcus pneumoniae endopeptidase O (PepO) is a multifunctional plasminogen and fi bronectin binding protein, facilitating evasion of innate immunity and invasion of host cells. J Biol Chem 2013;288:6849-63.

64. Agarwal V, Sroka M, Fulde M, Bergmann S, Riesbeck K, et al. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence. J Biol Chem 2014;289:15833-44.

65. Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med 2012;4:160rv12.

66. Rohde M, Chhatwal GS. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr Top Microbiol Immunol 2013;368:83-110.

67. McKenna DJ, Patel D, McCance DJ. MiR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes. Virology 2014;448:210-6.

68. Bergmann S, Schoenen H, Hammerschmidt S. The interaction between bacterial enolase and plasminogen promotes adherence of Streptococcus pneumoniae to epithelial and endothelial cells. Int J Med Microbiol 2013;303:452-62.

69. Zhu D, Ye M, Zhang W. E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells. Int J Clin Exp Pathol 2015;8:4981-9.

70. Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015;6:22613-23.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/