REFERENCES

1. National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Available from: https://seer.cancer.gov/. [Last accessed on 27 Mar 2019].

2. Latov N. Pathogenesis and therapy of neuropathies associated with monoclonal gammopathies. Ann Neurol 1995;37 Suppl 1:S32-42.

3. Batuman V. The pathogenesis of acute kidney impairment in patients with multiple myeloma. Advances in Chronic Kidney Disease 2012;19:282-6.

4. Zhang J, Sun W, Huang Z, Chen S, Zhong Y, et al. Light chain multiple myeloma, clinic features, responses to therapy and survival in a long-term study. World J Surg Oncol 2014;12:234.

5. Chawla SS, Kumar SK, Dispenzieri A, Greenberg AJ, Larson DR, et al. Clinical course and prognosis of non-secretory multiple myeloma. Eur J Haematol 2015; doi: 10.1111/ejh.12534.

6. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N. International myeloma working group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23:2210-21.

7. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat Res 1994;137:S68-97.

8. Landgren O, Gridley G, Turesson I, Caporaso NE, Goldin LR, et al. Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood 2006;107:904-6.

9. Waxman AJ, Mink PJ, Devesa SS, Anderson WF, Weiss BM, et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood 2010;116:5501-6.

10. Verma PS, Howard RS, Weiss BM. The impact of race on outcomes of autologous transplantation in patients with multiple myeloma. Am J Hematol 2008;83:355-8.

11. Larsson SC, Wolk A. Body mass index and risk of multiple myeloma: a meta-analysis. Int J Cancer 2007;121:2512-6.

12. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, et al. Body fatness and cancer - viewpoint of the IARC Working Group. N Engl J Med 2016;375:794-8.

13. Wallin A, Larsson SC. Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur J Cancer 2011;47:1606-15.

14. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569-78.

15. Teras LR, Kitahara CM, Birmann BM, Hartge PA, Wang SS, et al. Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies. Br J Haematol 2014;166:667-76.

16. Chiu BC, Gapstur SM, Greenland P, Wang R, Dyer A. Body mass index, abnormal glucose metabolism, and mortality from hematopoietic cancer. Cancer Epidemiol Biomarkers Prev 2006;15:2348-54.

17. Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016. JAMA 2018;319:1723-5.

18. Félix-Redondo FJ, Grau M, Fernández-Bergés D. Cholesterol and cardiovascular disease in the elderly. Facts and Gaps. Aging Dis 2013;4:154-69.

19. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, et al. Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, united states, 1980-2012. JAMA 2014;312:1218-26.

20. Akram M. Mini-review on glycolysis and cancer. J Cancer Educ 2013;28:454-7.

21. Wu C, Khan SA, Lange AJ. Regulation of glycolysis-role of insulin. Exp Gerontol 2005;40:894-9.

22. Moran LA, Horton HR, Scrimgeour KG, Perry MD. Principles of biochemistry. Available from: https://www.twirpx.com/file/718377/. [Last accessed on 27 Mar 2019].

23. Champe PC, Harvey RA, Ferrier DR. Lippincott's illustrated reviews: biochemistry. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008.

24. Potter M, Newport E, Morten KJ. The Warburg effect: 80 years on. Biochemical Society Transactions 2016;44:1499-505.

25. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007;104:19345-50.

26. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33.

27. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927;8:519-30.

28. Warburg O. The chemical constitution of respiration ferment. Science 1928;68:437-43.

29. Warburg O. On the origin of cancer cells. Science 1956;123:309-14.

30. Bischoff R, Schlüter H. Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. J Proteomics 2012;75:2275-96.

31. Kanarek N, Keys HR, Cantor JR, Lewis CA, Chan SH, et al. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature 2018;559:632-6.

32. Hopkins BD, Pauli C, Du X, Wang DG, Li X, et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018;560:499-503.

33. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, et al. Corrigendum: modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 2017;548:122.

34. Steiner N, Muller U, Hajek R, Sevcikova S, Borjan B, et al. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS One 2018;13:e0202045.

35. Puchades-Carrasco L, Lecumberri R, Martinez-Lopez J, Lahuerta JJ, Mateos MV, et al. Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission. Clin Cancer Res 2013;19:4770-9.

36. Ludwig C, Williams DS, Bartlett DB, Essex SJ, McNee G, et al. Alterations in bone marrow metabolism are an early and consistent feature during the development of MGUS and multiple myeloma. Blood Cancer J 2015;5:e359.

37. Gonsalves WI, Ramakrishnan V, Hitosugi T, Ghosh T, Jevremovic D, et al. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies. JCI Insight 2018;3:94543.

38. Hossen MA, Nagata Y, Waki M, Ide Y, Takei S, et al. Decreased level of phosphatidylcholine (16:0/20:4) in multiple myeloma cells compared to plasma cells: a single-cell MALDI-IMS approach. Anal Bioanal Chem 2015;407:5273-80.

39. Zub KA, Sousa MM, Sarno A, Sharma A, Demirovic A, et al. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 2015;10:e0119857.

40. Soriano GP, Besse L, Li N, Kraus M, Besse A, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 2016;30:2198-207.

41. Zaal EA, Wu W, Jansen G, Zweegman S, Cloos J, et al. Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer Metab 2017;5:7.

42. Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res 2015;75:2071-82.

43. McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, et al. Assessment of total lesion glycolysis by (18)F FDG PET/CT significantly improves prognostic value of GEP and ISS in Myeloma. Clin Cancer Res 2017;23:1981-7.

44. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013;10:143-53.

45. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005;4:988-1004.

46. Parsons R. Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 2004;15:171-6.

47. Lee JY, Engelman JA, Cantley LC. Biochemistry. PI3K charges ahead. Science 2007;317:206-7.

48. Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138+ cells. Leukemia 2010;24:1967.

49. Gastelum G, Kraut J, Poteshkina A, Artiga E, Weckstein G, et al. Targeting of the hypoxia-induced acid microenvironment of multiple myeloma cells increases hypoxia-mediated apoptosis. Blood 2017;130:4376.

50. Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, et al. Hypoxia-inducible factor 1 alpha expression correlates with angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol 2004;46:200-8.

51. Isobe T, Aoyagi K, Koufuji K, Shirouzu K, Kawahara A, et al. Clinicopathological significance of hypoxia-inducible factor-1 alpha (HIF-1alpha) expression in gastric cancer. Int J Clin Oncol 2013;18:293-304.

52. Baba Y, Nosho K, Shima K, Irahara N, Chan AT, et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 2010;176:2292-301.

53. Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002;53:1192-202.

54. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008;452:230.

55. Gu Z, Xia J, Xu H, Frech I, Tricot G, et al. NEK2 Promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase. J Hematol Oncol 2017;10:17.

56. Berg J, Tymoczko J, Stryer L. Gluconeogenesis and glycolysis are reciprocally regulated. WH Freeman, New York: Biochemistry; 2002.

57. Zhang H, Li L, Chen Q, Li M, Feng J, et al. PGC1beta regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism. Mol Oncol 2018;12:1579-95.

58. McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, et al. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy. Blood 2012;119:4686-97.

59. Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KUA, Kandela I, et al. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res 2015;21:1161-71.

60. Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Seminars in cancer biology. Elsevier; 2009. pp. 17-24.

61. Liu Y, Wu K, Shi L, Xiang F, Tao K, et al. Prognostic significance of the metabolic marker hexokinase-2 in various solid tumors: a meta-analysis. PLoS One 2016;11:e0166230.

62. Nakano A, Miki H, Nakamura S, Harada T, Oda A, et al. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with 3-bromopyruvate. J Bioenerg Biomembr 2012;44:31-8.

63. El Arfani C, De Veirman K, Maes K, De Bruyne E, Menu E. Metabolic features of multiple myeloma. Int J Mol Sci 2018;19:E1200.

64. Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, et al. The HK2 dependent "Warburg Effect" and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 2016;21:E1730.

65. Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, et al. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 2015;35 Suppl:S129-50.

66. Demel HR, Feuerecker B, Piontek G, Seidl C, Blechert B, et al. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am J Cancer Res 2015;5:1649-64.

67. Shanmugam M, McBrayer SK, Qian J, Raikoff K, Avram MJ, et al. Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine. J Biol Chem 2009;284:26816-30.

68. Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 2016;35:3955-64.

69. Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev 2017;35:7-14.

70. Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 2014;124:398-412.

71. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 2007;178:93-105.

72. Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, et al. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget 2017;8:85858-67.

73. Bolzoni M, Chiu M, Accardi F, Vescovini R, Airoldi I, et al. Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood 2016;128:667-79.

74. Isoda A, Kaira K, Iwashina M, Oriuchi N, Tominaga H, et al. Expression of L-type amino acid transporter 1 (LAT1) as a prognostic and therapeutic indicator in multiple myeloma. Cancer Sci 2014;105:1496-502.

75. Jurczyszyn A, Czepiel J, Gdula-Argasinska J, Czapkiewicz A, Biesiada G, et al. Erythrocyte membrane fatty acids in multiple myeloma patients. Leuk Res 2014;38:1260-5.

76. Jurczyszyn A, Czepiel J, Gdula-Argasinska J, Pasko P, Czapkiewicz A, et al. Plasma fatty acid profile in multiple myeloma patients. Leuk Res 2015;39:400-5.

77. Berge K, Tronstad KJ, Bohov P, Madsen L, Berge RK. Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation. J Lipid Res 2003;44:118-27.

78. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. The J Clin Invest 2010;120:142-56.

79. Tirado-Vélez JM, Joumady I, Sáez-Benito A, Cózar-Castellano I, Perdomo G. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation. PLoS One 2012;7:e46484.

80. O’Connor RS, Guo L, Ghassemi S, Snyder NW, Worth AJ, et al. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Sci Rep 2018;8:6289.

81. Bullwinkle EM, Parker MD, Bonan NF, Falkenberg LG, Davison SP, et al. Adipocytes contribute to the growth and progression of multiple myeloma: unraveling obesity related differences in adipocyte signaling. Cancer Lett 2016;380:114-21.

82. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. HIgh serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med 1991;115:931-5.

83. Moreau P, Cavo M, Sonneveld P, Rosinol L, Attal M, et al. Combination of international scoring system 3, high lactate dehydrogenase, and t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high risk of early mm progression-related death. J Clin Oncol 2014;32:2173-80.

84. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 2009;9:1084-101.

85. Brown CO, Salem K, Wagner BA, Bera S, Singh N, et al. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase. Biochem J 2012;444:515-27.

86. Azab AK, Hu J, Quang P, Azab F, Pitsillides C, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 2012;119:5782-94.

87. Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, et al. Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res 2016;76:818-30.

88. Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S. Angiogenesis and multiple myeloma. Cancer Microenviron 2011;4:325-37.

89. Otjacques E, Binsfeld M, Noel A, Beguin Y, Cataldo D, et al. Biological aspects of angiogenesis in multiple myeloma. Int J Hematol 2011;94:505-18.

90. Fujiwara S, Wada N, Kawano Y, Okuno Y, Kikukawa Y, et al. Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Exp Hematol Oncol 2015;4:12.

91. Walters DK, Arendt BK, Jelinek DF. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 2013;12:3175-83.

92. Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in cancer biology. Elsevier; 2017. pp. 74-89.

93. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 2018; doi: 10.1038/s41591-018-0052-4.

94. Yang H, Tabe Y, Sekihara K, Saito K, Ma H, et al. Novel oxidative phosphorylation inhibitor IACS-010759 induces AMPK-dependent apoptosis of AML cells. Blood 2017;130:1245.

95. Arihara Y, Takada K, Kamihara Y, Hayasaka N, Nakamura H, et al. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma. Oncotarget 2017;8:65889-99.

96. Johnson WD, Muzzio M, Detrisac CJ, Kapetanovic IM, Kopelovich L, et al. Subchronic oral toxicity and metabolite profiling of the p53 stabilizing agent, CP-31398, in rats and dogs. Toxicology 2011;289:141-50.

97. Kühnel A, Blau O, Nogai KA, Blau IW. The Warburg effect in multiple myeloma and its microenvironment. Arch Med Res 2017;5.

98. Biondo PD, Brindley DN, Sawyer MB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 2008;19:787-96.

99. Hajjaji N, Bougnoux P. Selective sensitization of tumors to chemotherapy by marine-derived lipids: a review. Cancer Treat Rev 2013;39:473-88.

100. de Aguiar Pastore Silva J, Emilia de Souza Fabre M, Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: a systematic review. Clin Nutr 2015;34:359-66.

101. Merendino N, Costantini L, Manzi L, Molinari R, D'Eliseo D, et al. Dietary omega -3 polyunsaturated fatty acid DHA: a potential adjuvant in the treatment of cancer. Biomed Res Int 2013;2013:310186.

102. Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, et al. Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. Biofactors 2011;37:399-412.

103. Wang J, Luo T, Li S, Zhao J. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs. Expert Opin Drug Deliv 2012;9:1-7.

104. Abdi J, Garssen J, Faber J, Redegeld F. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. J Nutr Biochem 2014;25:1254-62.

105. Dai X, Li M, Geng F. Omega-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid enhance dexamethasone sensitivity in multiple myeloma cells by the p53/miR-34a/Bcl-2 axis. Biochemistry (Moscow) 2017;82:826-33.

106. Kumar GS, Das U. Cytotoxic action of alpha-linolenic and eicosapentaenoic acids on myeloma cells in vitro. Prostaglandins, leukotrienes and essential fatty acids 1997;56:285-93.

107. Wang WQ, Zhao XY, Wang HY, Liang Y. Increased fatty acid synthase as a potential therapeutic target in multiple myeloma. J Zhejiang Univ Sci B 2008;9:441-7.

108. Sanchez WY, McGee SL, Connor T, Mottram B, Wilkinson A, et al. Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br J Cancer 2013;108:1624-33.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/