fig2
Figure 2. Strategies for CTC enrichment. A: A magnetic sifter device for CTC isolation when a magnetic field is applied. Magnetically labeled CTCs are captured at the edges of the pores, while unlabeled cells pass through the pores under fluid flow; B: dual antibodies (anti-EpCAM and anti-CD146) and biodegradable gelatin nanoparticle-coated microbeads for the capture of mesenchymal CTCs; C: a microfluidic device embedded a wedge-shaped microchamber for cell separation based on multiple biophysical properties; D: a 3D bionic cytosensor with PLGA nanofibers for CTC capture; E: vortex technology exploited for CTC isolating; F: a multizone velocity valley device for isolating heterogeneous CTCs in four different regions of varying linear velocities; G: the hollow glass microspheres with nanotopographical structures (NSHGMS) for excellent CTC isolation; H: a microfluidic device embedded a pyramid-shaped microchamber for size-based CTC separation; I: a MagRC approach for separating and in-line profiling of heterogeneous CTCs. A: Copyright Royal Society of Chemistry, 2013. Reproduced with permission from reference[13]; B: Copyright Ivyspring International Publisher, 2013. Reproduced with permission from reference[27]; C: Copyright Royal Society of Chemistry, 2018. Reproduced with permission from reference[42]; D: Copyright BioMed Central, 2018. Reproduced with permission from reference[43]; E: Copyright Nature, 2017. Reproduced with permission from reference[45]; F: Copyright Wiley, 2015. Reproduced with permission from reference[46]; G: Copyright Institute Of Electrical And Electronics Engineers, 2018. Reproduced with permission from reference[52]; H: Copyright Springer, 2018. Reproduced with permission from reference[53]; I: Copyright Wiley, 2018. Reproduced with permission from reference[54]