REFERENCES

1. Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment of triple-negative breast cancer. 2018 2018;25:9.

2. Abbott DE, Bailey CM, Postovit LM, Seftor EA, Margaryan N, et al. The epigenetic influence of tumor and embryonic microenvironments: how different are they? Cancer Microenvironment 2008;1:13-21.

3. Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol 2013;45:885-98.

4. Mooney BM, Raof NA, Li Y, Xie Y. Convergent mechanisms in pluripotent stem cells and cancer: implications for stem cell engineering. Biotechnol J 2013;8:408-19.

5. Dong W, Qiu C, Shen H, Liu Q, Du J. Antitumor effect of embryonic stem cells in a non-small cell lung cancer model: antitumor factors and immune responses. Int J Med Sci 2013;10:1314-20.

6. Zhang Z, Chen X, Chang X, Ye X, Li Y, et al. Human embryonic stem cells--a potential vaccine for ovarian cancer. Asian Pac J Cancer Prev 2012;13:4295-300.

7. Tzukerman M, Rosenberg T, Reiter I, Ben-Eliezer S, Denkberg G, et al. The influence of a human embryonic stem cell-derived microenvironment on targeting of human solid tumor xenografts. Cancer Res 2006;66:3792-801.

8. Abdul Raof N, Mooney BM, Xie Y. Bioengineering embryonic stem cell microenvironments for the study of breast cancer. Int J Mol Sci 2011;12:7662-91.

9. Raof N, Raja W, Castracane J, Xie Y. Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells. Biomaterials 2011;32:4130-9.

10. Mooney B, Abdul-Raof N, Tian YI, Xie Y. Restriction of cancer metastatic potential using embryonic stem cells encapsulated in alginate hydrogel microstrands. ACS Biomater Sci Eng 2017;3:1769-79.

11. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 2006;12:5268-72.

12. Sheeba CJ, Marslin G, Revina AM, Franklin G. Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnol Rev 2013; doi: 10.1515/ntrev-2013-0032.

13. Merla A, Goel S. Novel drugs targeting the epidermal growth factor receptor and its downstream pathways in the treatment of colorectal cancer: a systematic review. Chemother Res Pract 2012;2012:11.

14. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141:1117-34.

15. Lu Y, Brush J, Stewart TA. NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal Kinase/Stress-activated protein kinase signaling pathway. J Biol Chem 1999;274:10047-52.

16. Ahmad A. Pathways to breast cancer recurrence. ISRN Oncol 2013;2013:16.

17. Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006;127:469-80.

18. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012;149:1192-205.

19. Green JL, La J, Yum KW, Desai P, Rodewald LW, et al. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci U S A 2013;110:6991-6.

20. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res 2003;63:2658-64.

21. Bremm A, Walch A, Fuchs M, Mages J, Duyster J, et al. Enhanced activation of epidermal growth factor receptor caused by tumor-derived E-cadherin mutations. Cancer Res 2008;68:707-14.

22. Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 2003;4:499-515.

23. Nejak-Bowen KN, Monga SPS. Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 2011;21:44-58.

24. Wilding J, Vousden KH, Soutter WP, McCrea PD, Del Buono R, et al. E-Cadherin transfection down-regulates the epidermal growth factor receptor and reverses the invasive phenotype of human papilloma virus-transfected keratinocytes. Cancer Res 1996;56:5285-92.

25. Lee EYHP, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2010;2:a003236.

26. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131.

27. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366:2-16.

28. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE. Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 2007;9:R63.

29. Hu T, Li C. Convergence between Wnt-β-catenin and EGFR signaling in cancer. Molecular Cancer 2010;9:236.

30. Yue X, Lan F, Yang W, Yang Y, Han L, et al. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res 2010;1366:27-37.

31. Rübsam M, Mertz AF, Kubo A, Marg S, Jüngst C, et al. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 2017;8:1250.

32. Dong Y, Cao B, Zhang M, Han W, Herman JG, et al. Epigenetic silencing of NKD2, a major component of wnt signaling, promotes breast cancer growth. Oncotarget 2015;6:22126-38.

33. Zhao S, Kurenbekova L, Gao Y, Roos A, Creighton CJ, et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene 2015;34:5069.

34. Li C, Franklin JL, Graves-Deal R, Jerome WG, Cao Z, et al. Myristoylated Naked2 escorts transforming growth factor α to the basolateral plasma membrane of polarized epithelial cells. Proc Natl Acad Sci U S A 2004;101:5571-6.

35. Zhou S, Abdouh M, Arena V, Arena M, Arena GO. Reprogramming malignant cancer cells toward a benign phenotype following exposure to human embryonic stem cell microenvironment. PLoS One 2017;12:e0169899.

36. Postovit LM, Margaryan NV, Seftor EA, Kirschmann DA, Lipavsky A, et al. Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci U S A 2008;105:4329-34.

37. He N, Feng G, Li Y, Xu Y, Xie X, et al. Embryonic stem cell preconditioned microenvironment suppresses tumorigenic properties in breast cancer. Stem Cell Res Ther 2016;7:95.

38. Dong W, Qiu C, Shen H, Liu Q, Du J. Antitumor effect of embryonic stem cells in a non-small cell lung cancer model: antitumor factors and immune responses. Int J Med Sci 2013;10:1314-20.

39. Giuffrida D, Rogers IM, Nagy A, Calogero AE, Brown TJ, et al. Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth. Cell Prolif 2009;42:788-98.

40. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci 2007;104:11298-303.

41. Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials 2008;29:3946-52.

42. Wang W, Liu X, Xie Y, Zhang Ha, Yu W, et al. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J Mater Chem 2006;16:3252-67.

43. Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 2010;31:404-12.

44. Watson AL, Rahrmann EP, Moriarity BS, Choi K, Conboy CB, et al. Canonical Wnt/β-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance. Cancer Discovery 2013;3:674-89.

45. Hazan RB, Norton L. The epidermal growth factor receptor modulates the Interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 1998;273:9078-84.

46. Mangelberger D, Kern D, Loipetzberger A, Eberl M, Aberger F. Cooperative Hedgehog-EGFR signaling. Front biosci (Landmark Ed) 2012;17:90-9.

47. Lim SO, Li CW, Xia W, Lee HH, Chang SS, et al. EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res 2016;76:1284-96.

48. Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res 2011;13:211.

49. Maltseva DV, Khaustova NA, Fedotov NN, Matveeva EO, Lebedev AE, et al. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J Clin Bioinforma 2013;3:13.

50. Jacquin MA, Chiche J, Zunino B, Bénéteau M, Meynet O, et al. GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death Differ 2013;20:1043.

51. Luetteke NC, Lee DC. Transforming growth factor alpha: expression, regulation and biological action of its integral membrane precursor. Semin Canc Biol 1990;1:265-75.

52. Geng F, Zhu W, Anderson RA, Leber B, Andrews DW. Multiple post-translational modifications regulate E-cadherin transport during apoptosis. J Cell Sci 2012;125:2615-25.

53. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, et al. Phosphorylation of B-catenin by AKT promotes B-catenin transcriptional activity. J Biol Chem 2007;282:11221-29.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/