REFERENCES

1. World Health Organization. Cancer. Available from: http://www.who.int/news-room/fact-sheets/detail/cancer. [Last accessed on 21 May 2019].

2. Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep 2015;42:841-51.

3. McIntyre A, Hulikova A, Ledaki I, Snell C, Singleton D, et al. Disrupting hypoxia-induced bicarbonate transport acidifies tumor cells and suppresses tumor growth. Cancer Res 2016;76:3744-55.

4. Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting protein - protein interactions in the HIF system. Chem Med Chem 2016;11:773-86.

5. Smith TG, Robbins PA, Ratcliffe PJ. The human side of hypoxia-inducible factor. Br J of Haematology 2008;141:325-34.

6. Xiang L, Gilkes DM, Hu H, Luo W, Bullen JW, et al. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget 2015;6:11768-78.

7. Xiang L, Gilkes DM, Hu H, Takano N, Luo W, et al. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget 2014;5:12509-27.

8. Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol 2017;56:503-15.

9. Lai F, Liu Q, Liu X, Ji M, Xie P, et al. LXY6090 - a novel manassantin A derivative - limits breast cancer growth through hypoxia-inducible factor-1 inhibition. Onco Targets Ther 2016;9:3829-40.

10. Sarkar R, Mukherjee S, Biswas J, Roy M. Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and metastatic potential of breast cancer cells: HIF-1α as a putative target. Free Radic Res 2016;50:84-100.

11. Zhou Z, Liu F, Zhang ZS, Shu F, Zheng Y, et al. Human rhomboid family-1 (RHBDF1) suppresses oxygen-independent degradation of hypoxia-inducible factor-1α in breast cancer. Cancer Res 2014;74:2719-30.

12. Huang Z, Wang R, Wei G, Jiang R, Zheng Y, et al. RAS protein activator-like 1 is functionally involved in hypoxia resistance in breast cancer cells by targeting hypoxia inducible factor-1α. Oncol Lett 2017;14:3839-45.

13. Nalwoga H, Ahmed L, Arnes JB, Wabinga H, Akslen LA. Strong expression of hypoxia-inducible factor-1α (HIF-1α) is associated with Axl expression and features of aggressive tumors in African breast cancer. PLoS One 2016;11:e0146823.

14. Cai FF, Xu C, Pan X, Cai L, Lin XY, et al. Prognostic value of plasma levels of HIF-1a and PGC-1a in breast cancer. Oncotarget 2016;7:77793-806.

15. Li M, Xiao D, Zhang J, Qu H, Yang Y, et al. Expression of LPA2 is associated with poor prognosis in human breast cancer and regulates HIF-1α expression and breast cancer cell growth. Oncol Rep 2016;6:3479-87.

16. Sun G, Wang Y, Hu W. Correlation between HIF-1α expression and breast cancer risk: a meta-analysis. Breast J 2014;20:213-15.

17. Tanaka T, Ikegami Y, Nakazawa H, Kuriyama N, Oki M, et al. Low-dose farnesyltransferase inhibitor suppresses HIF-1α and snail expression in triple-negative breast cancer MDA-MB-231 cells in vitro. J. Cell. Physiol 2017;232:192-201.

18. Badowska-Kozakiewicz A, Sobol M, Patera J. Expression of Hypoxia-Inducible Factor 1α in Invasive Breast Cancer with Metastasis to Lymph Nodes: Correlation with Steroid Receptors, HER2 and EPO-R. Adv Clin Exp Med 2016;25:741-50.

19. Villa JC, Chiu D, Brandes AH, Escorcia FE, Villa CH, et al. Non-transcriptional role of Hif-1α in activation of γ-secretase and Notch signaling in breast cancer. Cell Rep 2014;8:1077-92.

20. Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 signaling enhances CXCR4-driven rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1α. Mol and Cellular Bio 2016;36:2011-26.

21. Huang R, Yu Y, Zong X, Li X, Ma L, et al. Monomethyltransferase SETD8 regulates breast cancer metabolism via stabilizing hypoxia-inducible factor 1a. Cancer Lett 2017;390:1-10.

22. Changchun K, Pengchao H, Ke S, Ying W, Lei W. Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett 2017;13:3253-60.

23. Dewangan J, Kaushik S, Rath SK, Balapure AK. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2 signalling axis. Life Sci 2018;193:9-19.

24. Filippi I, Carraro F, Naldini A. Interleukin-1β Affects MDAMB231 Breast Cancer Cell Migration under Hypoxia: Role of HIF-1α and NFκB Transcription Factors. Mediators of Inflamm 2015;2105:789414.

25. Dong M, Fan XJ, Chen ZH, Wang TT, Li X, et al. Aberrant expression of enhancer of zeste homologue 2, correlated with HIF-1α, refines relapse risk and predicts poor outcome for breast cancer. Oncol Rep 2014;32:1101-7.

26. Rajkovic-Molek K, Mustać E, Hadžisejdić I, Jonjić N. The prognostic importance of nuclear factor kB and hypoxia-inducible factor 1a in relation to the breast cancer subtype and the overall survival. Appl Immunohistochem Mol Morphol 2014;22:464-70.

27. Yang J, AlTahan A, Jones DT, Buffa FM, Bridges E, et al. Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. PNAS 2015;112:15172-77.

28. Jia X, Hong Q, Lei L, Li D, Li J, et al. Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in estrogen receptor-positive breast cancer. Oncotarget 2015;6:8648-62.

29. Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, et al. Inhibition of aerobic glycolysis Represses Akt/mTOR/HIF-1α axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS One 2015;10:e0132285.

30. Yehia L, Boulos F, Jabbour M, Mahfoud Z, Fakhruddin N, et al. Expression of HIF-1α and markers of angiogenesis are not significantly different in triple negative breast cancer compared to other breast cancer molecular subtypes: implications for future therapy. PLoS One 2015;10:e0129356.

31. Kazi AA, Gilani RA, Schech AJ, Chumsri S, Sabnis G, et al. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer. Breast Cancer Res 2014;16:R15.

32. Li YP, Tian FG, Shi PC, Guo LY, Wu HM, et al. 4-Hydroxynonenal promotes growth and angiogenesis of breast cancer cells through HIF-1α stabilization. Asian Pac J Cancer Prev 2014;15:10151-56.

33. Aghazadeh S, Yazdanparast R. Activation of STAT3/HIF-1α/Hes-1 axis promotes Trastuzumab resistance in HER2-overexpressing breast cancer cells via down-regulation of PTEN. Biochim Biophys Acta Gen Subj 2017;1861:1970-80.

34. Zhong R, Xu H, Chen G, Zhao G, Gao Y, et al. The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells. Tumour Biol 2015;36:7077.

35. Li X, Wu Y, Liu A, Tang X. Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumour Biol 2016;37:14733-43.

36. Li G, Shan C, Liu L, Zhou T, Zhou J, et al. Tanshinone IIA inhibits HIF-1α and VEGF expression in breast cancer cells via mTOR/p70S6K/RPS6/4E-BP1 signaling pathway. PLoS One 2015;10:e0117440.

37. Cho KH, Yu SL, Cho DY, Park CG, Lee HY. Breast cancer metastasis suppressor 1 (BRMS1) attenuates TGF-β1-induced breast cancer cell aggressiveness through downregulating HIF-1α expression. BMC Cancer 2015;15:829.

38. Wang F, Chang M, Shi Y, Jiang L, Zhao J, et al. Down-regulation of hypoxia-inducible factor-1 suppresses malignant biological behavior of triple-negative breast cancer cells. Int J Clin Exp Med 2014;7:3933-40.

39. Shao C, Zhang J, Fu J, Ling F. The potential role of Brachyury in inducing epithelial-to-mesenchymal transition (EMT) and HIF-1a expression in breast cancer cells. Biochem Biophys Res Commun 2015;467:1083-89.

40. Fu P, Du F, Chen W, Yao M, Lv K, et al. Tanshinone IIA blocks epithelial-mesenchymal transition through HIF-1α downregulation, reversing hypoxia-induced chemotherapy resistance in breast cancer cell lines. Oncol Rep 2014;31:2561-68.

41. Li Z, Zhu Q, Hu L, Chen H, Wu Z, et al. Anterior gradient 2 is a binding stabilizer of hypoxia inducible factor-1α that enhances CoCl2 -induced doxorubicin resistance in breast cancer cells. Cancer Sci 2015;106:1041-49.

42. Xu S, Liu P. Tanshinone II-A: new perspectives for old remedies. Expert Opin Ther Pat 2013;23:149-53.

43. von Wahlde MK, Hülsewig C, Ruckert C, Götte M, Kiesel L, et al. The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling. Gynecol Endocrinol 2015;31:160-64.

44. Luo HQ, Xu M, Zhong WT, Cui ZY, Liu FM, et al. EGCG decreases the expression of HIF-1α and VEGF and cell growth in MCF-7 breast cancer cells. J BUON 2014;19:435-39.

45. Yang H, Xia Q, Zou Y, Wang K, Jiang W, et al. M410, a combretastatin A4 analogue, disrupts microtubules and inhibits HIF-1α in human breast cancer cells. Oncol Rep 2015;34:334-40.

46. Ghattass K, El-Sitt S, Zibara K, Rayes S, Haddadin MJ, et al. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol Cancer 2014;13:12-24.

47. Liu Y, Zhang J, Sun X, Li M. EMMPRIN down-regulating miR-106a/b modifies breast cancer stem-like cell properties via interaction with fibroblasts through STAT3 and HIF-1α. Sci Rep 2016;6:28329.

48. Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol 2017;40:457-70.

49. Kuo CY, Cheng CT, Hou P, Lin YP, Ma H, et al. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget 2016;7:34052-69.

50. Tosatto A, Sommaggio R, Kummerow C, Bentham RB, Blacker TS, et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α. EMBO Mol Med 2016;8:569-85.

51. Zhu X, Li Q, Li S, Chen B, Zou H. HIF-1α decoy oligodeoxynucleotides inhibit HIF-1α signaling and breast cancer proliferation. Int J Oncol 2015;46:215-22.

52. Wei L, Zhou Y, Qiao C, Ni T, Li Z, et al. Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization. Cell Death Dis 2015;6:e1714.

53. Jeong YJ, Cho HJ, Magae J, Lee IK, Park KG, et al. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/ p70S6K pathway in MDA-MB-231 breast cancer cells. Toxicol. Appl. Pharmacol 2013;273:542-50.

54. Qiu SP, Li HL, Shi HL, Wu H, Huang F, et al. Notoginsenoside Ft1 down-regulates HIF-1α, inhibits cell proliferation, decreases migration and promotes apoptosis in breast cancer cells. Yao Xue Xue Bao 2016;51:1091-97. (in Chinese)

55. Li J, Zhang C, Jiang H, Cheng J. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth. Onco Targets Ther 2015;8:427-35.

56. Esfandiary A, Taherian-Esfahani Z, Abedin-Do A, Mirfakhraie R, Shirzad M, et al. Lactobacilli modulate hypoxia-inducible factor (HIF)-1 regulatory pathway in triple negative breast cancer cell line. Cell J 2016;18:237-44.

57. Wei Z, Shan Y, Tao L, Liu Y, Zhu Z, et al. Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF-1α synthesis, and decreases breast cancer metastasis. Mol Carcinog 2017;56:2317-31.

58. Pan Y, Shao D, Zhao Y, Zhang F, Zheng X, et al. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK-HIF-1α. Int J Biol Sci 2017;13:794-803.

Journal of Cancer Metastasis and Treatment
ISSN 2454-2857 (Online) 2394-4722 (Print)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/