REFERENCES
1. Jex HS. The Edwin Smith Surgical Papyrus: first milestone in the march of medicine. Merck Rep 1951;60:20-2.
2. Sanchez GM, Meltzer ES. The Edwin Smith Papyrus: Updated translation of the trauma treatise and modern medical commentaries: Lockwood Press; 2012.
3. Brayn CP, Smith GE. The Papyrus Ebers, translated from the german version. Letchworth, Herts. The Guardian City Press LTD; 1930.
4. Papavramidou N, Papavramidis T, Demetriou T. Ancient Greek and Greco-Roman methods in modern surgical treatment of cancer. Ann Surg Oncol 2010;17:665-7.
5. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Globocan 2012, Cancer Incidence and Mortality Worldwide: IARC. In: internet N, editor. Cancer Fact Sheets. Lyon, France: International Agency for Research on Cancer; 2013.
6. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol 2012;14 Suppl 5:v1-49.
7. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 2013;15 Suppl 2:ii1-56.
8. Molnár Pt. Classification of primary brain tumors: molecular aspects, management of CNS tumors. InTech; 2011.
9. Chandana SR, Movva S, Arora M, Singh T. Primary brain tumors in adults. Am Fam Physician 2008;77:1423-30.
10. Parrish KE, Sarkaria JN, Elmquist WF. Improving drug delivery to primary and metastatic brain tumors: Strategies to overcome the blood-brain barrier. Clin Pharmacol Ther 2015;97:336-46.
11. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015;152:63-82.
12. Armstrong TS. Head's up on the treatment of malignant glioma patients. Oncol Nurs Forum 2009;36:E232-40.
14. Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1999;1:44-51.
15. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004;16:1-13.
16. Cook LJ, Freedman J. Brain Tumors. New York: The Rosen Publishing Group; 2012.
17. Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Decleves X. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2009;77:897-909.
18. Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 2012;53:1-6.
19. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015;19:1-12.
20. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173-85.
21. Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007;13:1663-74.
22. Barthomeuf C, Chollet P, Bayet-Robert M. Curcuminoids in Combination Docetaxel for the Treatment of Cancer and Tumour Metastasis. In: Institut National De La Sante Et De La Recherche Medicale (Inserm); 2014. (ISBN No. US20140128337 A1)
23. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005;2:86-98.
24. Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, Marchi N. Pattern of P450 expression at the human blood-brain barrier: Roles of epileptic condition and laminar flow. Epilepsia 2010;51:1408-17.
25. Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev 1991;16:65-82.
26. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010;9:906-20.
27. Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv 2013;4:10.4155/tde.13.38.
28. Madsen SJ, Hirschberg H. Site-specific opening of the blood-brain barrier. J Biophotonics 2010;3:356-67.
29. Kazantsev AG, Outeiro TF. Drug discovery for CNS disorders: from bench to bedside. CNS Neurol Disord Drug Targets 2010;9:668.
30. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010;37:48-57.
32. Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD, Mikkelsen T, Rosenfeld S, Sarantopoulos J, Meyers CA, Fielding RM, Elian K, Wang X, Lawrence B, Shing M, Kelsey S, Castaigne JP, Wen PY. Phase I Study of GRN1005 in Recurrent Malignant Glioma. Clin Cancer Res 2013;19:1567-76.
33. Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24:1759-71.
34. Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv 2009;6:227-37.
35. Wang YY, Lui PC, Li JY. Receptor-mediated therapeutic transport across the blood-brain barrier. Immunotherapy 2009;1:983-93.
36. Papademetriou LT, Porter T. Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv 2015;6:989-1016.
37. Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Beliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008;324:1064-72.
38. Jefferies W. CNS-targeted conjugates having modified fc regions and methods of use thereof. In: Bioasis Technologies Inc.; 2015. (ISBN No. US20150093399 A1)
39. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP, Beliveau R. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 2008;106:1534-44.
40. Kurzrock R, Gabrail N, Chandhasin C, Moulder S, Smith C, Brenner A, Sankhala K, Mita A, Elian K, Bouchard D, Sarantopoulos J. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Cancer Ther 2012;11:308-16.
41. Menlo Park C. Geron Discontinues GRN1005 and Restructures to Focus on Imetelstat Development in Hematologic Malignancies and Solid Tumors with Short Telomeres. In; 2012 .
42. Che C, Yang G, Thiot C, Lacoste MC, Currie JC, Demeule M, Regina A, Beliveau R, Castaigne JP. New Angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J Med Chem 2010;53:2814-24.
43. Bertrand Y, Currie JC, Demeule M, Regina A, Che C, Abulrob A, Fatehi D, Sartelet H, Gabathuler R, Castaigne JP, Stanimirovic D, Beliveau R. Transport characteristics of a novel peptide platform for CNS therapeutics. J Cell Mol Med 2010;14:2827-39.
44. Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, Mittapalli RK, Palmieri D, Steeg PS, Lockman PR, Smith QR. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 2009;26:2486-94.
45. Xin H, Jiang X, Gu J, Sha X, Chen L, Law K, Chen Y, Wang X, Jiang Y, Fang X. Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011;32:4293-305.
46. Shen J, Zhan C, Xie C, Meng Q, Gu B, Li C, Zhang Y, Lu W. Poly (ethylene glycol)-block-poly(D, L-lactide acid) micelles anchored with angiopep-2 for brain-targeting delivery. J Drug Target 2011;19:197-203.
47. Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, Ren J, Qian Y, Zhang Q, Chen J, Jiang X. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 2012;33:916-24.
48. Gaillard PJ. Conjugates for targeted drug delivery across the blood-brain barrier. In: to-BBB Holding B.V.; 2013 . (ISBN No. EP2308514 B1)
49. Gaillard PJ, De Boer AG, Brink A. Differentially Expressed Nucleic Acids in the Blood–Brain Barrier Under Inflammatory Conditions. In: Gaillard, P.J.De Boer, A.G. Brink, A.; 2008 . (ISBN No. US20080213179 A1)
50. Gaillard PJ. Glutathione-based drug delivery system. In: To-Bbb Holding B.V.; 2010 . (ISBN No. WO2010095940 A2)
51. Dickerson IM, Brown EB. Methods of treating cancer using an agent that modulates activity of the calcitonin-gene related peptide ("CGRP") receptor. In: University Of Rochester; 2011 . (ISBN No. US 20110189205 A1)
52. Furness S, Johns T, Wookey PJ. Diagnosis and treatment of brain tumors. In: Welcome Receptor Antibodies Pty Ltd; 2012 . (ISBN No. WO2012000062 A1)
53. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 2014;247:291-307.
54. Ding H, Ljubimova JY, Holler E, Black KL. Poly (beta malic acid) with pendant Leu-Leu-Leu tripeptide for effective cytoplasmic drug delivery. In: Cedars-Sinai Medical Center; 2014 . (ISBN No. US 8795648 B2)
55. Patil R, Holler E, Black KL, Ljubimova JY. Drug delivery of temozolomide for systemic based treatment of cancer. In: Cedars-Sinai Medical Center; 2014 . (ISBN No. US20140161762 A1)
56. Weiss N, Miller F, Cazaubon S, Couraud PO. [Blood–brain barrier part III: therapeutic approaches to cross the blood–brain barrier and target the brain]. Rev Neurol 2010;166:284-8.
57. Estella-Hermoso de Mendoza A, Preat V, Mollinedo F, Blanco-Prieto MJ. In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. J Control Release 2011;156:421-6.
58. Coley HM. Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods Mol Biol 2010;596:341-58.
59. Das M, Sahoo SK. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS One 2012;7:e32920.
60. Kim MK, Choo H, Chong Y. Water-soluble and cleavable quercetin-amino acid conjugates as safe modulators for P-glycoprotein-based multidrug resistance. J Med Chem 2014;57:7216-33.
61. Kim MK, Park KS, Choo H, Chong Y. Quercetin-POM (pivaloxymethyl) conjugates: Modulatory activity for P-glycoprotein-based multidrug resistance. Phytomedicine 2015;22:778-85.
62. Romiti N, Tramonti G, Donati A, Chieli E. Effects of grapefruit juice on the multidrug transporter P-glycoprotein in the human proximal tubular cell line HK-2. Life Sci 2004;76:293-302.
63. Banks WA, Kumar VB, Darling T, Clayton R. Modulation of blood-brain barrier protein expression. In: St. Louis University; 2010 . (ISBN No. US20100196393 A1)
64. McChesney JD, Tapolsky G, Emerson DL, Marshall J, Ahmed T, Cohn A, Kurman M, Modiano M. Taxane analogs for the treatment of brain cancer. In: Tapestry Pharmaceuticals, Inc.; 2011 . (ISBN No. US 20110318334 A1)
65. Tosi G, Vergoni AV, Ruozi B, Bondioli L, Badiali L, Rivasi F, Costantino L, Forni F, Vandelli MA. Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: In vivo pharmacological evidence and biodistribution. J Control Release 2010;145:49-57.
66. Bazile D, Prud'homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me. PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995;84:493-8.
67. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 2006;114:343-7.
68. Weissenbock A, Wirth M, Gabor F. WGA-grafted PLGA-nanospheres: preparation and association with Caco-2 single cells. J Control Release 2004;99:383-92.
69. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51.
70. Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y, Wang Z, He Z. Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 2011;32:5524-33.
71. Petkar KC, Chavhan SS, Agatonovik-Kustrin S, Sawant KK. Nanostructured materials in drug and gene delivery: a review of the state of the art. Crit Rev Ther Drug Carrier Syst 2011;28:101-64.
72. Meyers JD, Doane T, Burda C, Basilion JP. Nanoparticles for imaging and treating brain cancer. Nanomedicine 2013;8:123-43.
73. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012;64:640-65.
74. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3:133.
75. Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 2005;298:274-92.
76. Wesselinova D. Current major cancer targets for nanoparticle systems. Curr Cancer Drug Targets 2011;11:164-83.
77. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343-55.
78. Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep 2015;11:3078-86.
79. Krebs MD. Biodegradable polymers for delivery of therapeutic agents. In: Colorado School Of Mines; 2014 . (ISBN No. US20140377366 A1)
80. Bae YH, Na K, Lee ES. PH-sensitive polymeric micelles for drug delivery. In: University Of Utah Research Foundation; 2010 . (ISBN No. US 7659314 B2)
81. Zhou Z, Patel TR, Piepmeier JM, Saltzman WM. Highly penetrative nanocarriers for treatment of cns disease. In: Yale University; 2015 . (ISBN No. US20150118311 A1)
82. Wu XY, Shalviri A. Polymeric nanoparticles useful in theranostics. In: The Governing Council Of The University Of Toronto; 2013 . (ISBN No. WO2013127004 A1)
83. Yerushalmi N, Kredo-Russo S, Lithwick YG, Satchi-Fainaro R, Ofek P. Nanocarrier system for micrornas and uses thereof. In: Rosetta Genomics Ltd. and Ramot At Tel-Aviv University Ltd; 2014 . (ISBN No. WO2014203189 A1)
84. Tour JM, Berlin J, Marcano D, Baskin DS, Sharpe MA. Targeted nanovectors and their use for treatment of brain tumors. In: The Methodist Hospital Research Institute & William Marsh Rice University; 2014 . (ISBN No. US 20140154269 A1)
85. Muller LK, Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem Biophys Res Commun 2015;468:411-8.
86. Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opinion on Drug Delivery 2013;10:1003-22.
87. Xiang Y, Liang L, Wang X, Wang J, Zhang X, Zhang Q. Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. J Control Release 2011;152:402-10.
88. Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX, Li XT, Zhao WY, Mu LM, Zeng F, Lou JN, Lu WL. Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 2014;35:5591-604.
89. Chen H, Qin Y, Zhang Q, Jiang W, Tang L, Liu J, He Q. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci 2011;44:164-73.
90. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci 2010;99:1745-61.
91. Munson JM, Bellamkonda RV, Arbiser JL. Nanocarrier therapy for treating invasive tumors. In: Emory University & Georgia Institute Of Technology; 2010 . (ISBN No. WO2010124004 A2)
92. Redelmeier T, Luz M. Liposomal Composition for Convection-Enhanced Delivery to the Central Nervous system. In: MedGenesis Therapeutix Inc.; 2011 . (ISBN No. US20110274625 A1)
93. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001;47:165-96.
94. Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97-109.
95. Panyam J, Chavanpatil MD. Lipid-derived nanoparticles for brain-targeted drug delivery. In: Panyam, J. and Chavanpatil, M. D.; 2010 . (ISBN No. US 20100076092 A1)
96. Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, Joo KM, Seo SW, Park TG, Nam DH. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem 2011;22:2568-72.
97. Singh I, Swami R, Pooja D, Jeengar MK, Khan W, Sistla R. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J Drug Target 2016;24:212-23.
98. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185-229.
99. Gaillard PJ, Appeldoorn CCM, Dorland R, van Kregten J, Manca F, Vugts DJ, Windhorst B, van Dongen GAMS, de Vries HE, Maussang D, van Tellingen O. Pharmacokinetics, Brain Delivery, and Efficacy in Brain Tumor-Bearing Mice of Glutathione Pegylated Liposomal Doxorubicin (2B3-101). PLoS One 2014;9:e82331.
100. Gaillard PJ, Kerklaan BM, Aftimos P, Altintas S, Jager A, Gladdines W, Lonnqvist F, Soetekouw P, Verheul H, Awada A, Schellens J, Brandsma D. Abstract CT216: Phase I dose escalating study of 2B3-101, glutathione PEGylated liposomal doxorubicin, in patients with solid tumors and brain metastases or recurrent malignant glioma. Cancer Res 2014;74:CT216.
101. Nektar Therapeutics. Etirinotecan Pegol (NKTR-102): A Next-Generation Topoisomerase I Inhibitor Being Developed in Breast, Ovarian and Colorectal Cancers. In. Etirinotecan Pegol (NKTR-102). USA: "Nektar Therapeutics"; 2013 .
102. Nagpal S, Recht CK, Bertrand S, Thomas RP, Ajlan A, Pena J, Gershon M, Coffey G, Kunz PL, Li G, Recht LD. Phase II pilot study of single-agent etirinotecan pegol (NKTR-102) in bevacizumab-resistant high grade glioma. Neuro Oncol 2015;123:277-82.
103. Hermanson GT. Chapter 1 - Introduction to Bioconjugation. In: editor~editors, editor. Bioconjugate Techniques. Boston:Academic Press 2013. pp. 1-125.
105. Bacha JA, Brown D, Dunn S, Steinø A. Use of dianhydrogalactitol and analogs and derivatives thereof to treat glioblastoma multiforme. In: Del Mar Pharmaceuticals; 2014 . (ISBN No. US20140221442 A1)
106. Tschoepe M, Kaleta K, Kumar V. Anti-egfr antibody drug conjugate formulations. In: Abbvie Deutschland Gmbh & Co.Kg, Abbvie Inc.; 2014 . (ISBN No. WO2014143765 A1)
107. Adair JH, Kester M, Smith JP, Altinoglu EI, Barth BM, Kaiser JM, Matters GL, Mcgovern C, Morgan TT, Sharma R. Bioconjugation of calcium phosphosilicate nanoparticles for selective targeting of cells in vivo. In: The Pennsylvania State Research Foundation; 2011 . (ISBN No. WO 2011057216 A1)
108. Hutchison R, Vitalis TZ, Gabathuler R. P97-antibody conjugates and methods of use. In: Bioasis Technologies, Inc.; 2013 . (ISBN No. US 20130183368 A1)
109. Kang T, Jiang M, Jiang D, Feng X, Yao J, Song Q, Chen H, Gao X, Chen J. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex. Mol Pharm 2015;12:2947-61.
110. Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E, De Waard M. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel) 2015;7:1079-101.
111. Pyrko P, Wang W, Markland FS, Swenson SD, Schmitmeier S, Schonthal AH, Chen TC. The role of contortrostatin, a snake venom disintegrin, in the inhibition of tumor progression and prolongation of survival in a rodent glioma model. J Neurosurg 2005;103:526-37.
112. Kasai T, Nakamura K, Vaidyanath A, Chen L, Sekhar S, El-Ghlban S, Okada M, Mizutani A, Kudoh T, Murakami H, Seno M. Chlorotoxin Fused to IgG-Fc Inhibits Glioblastoma Cell Motility via Receptor-Mediated Endocytosis. J Drug Deliv 2012;2012:975763.
113. Yoo B, Ifediba MA, Ghosh S, Medarova Z, Moore A. Combination treatment with theranostic nanoparticles for glioblastoma sensitization to TMZ. Mol Imaging Biol 2014;16:680-9.
114. Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V, Pucci A, Tsotakos T, Psimadas D, Ponti J, Franchini MC. Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (Lond) 2014;9:839-49.
115. Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas. ACS Appl Mater Interfaces 2015;7:19798-808.
116. Zhao L, Shi X, Zhao J. Chlorotoxin-conjugated nanoparticles for targeted imaging and therapy of glioma. Curr Top Med Chem 2015;15:1196-208.
117. Wang X, Guo Z. Chlorotoxin-conjugated onconase as a potential anti-glioma drug. Oncol Lett 2015;9:1337-42.
118. Wang H, Gu W, Xiao N, Ye L, Xu Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int J Nanomedicine 2014;9:1433-42.
119. Cheng Y, Zhao J, Qiao W, Chen K. Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. Am J Nucl Med Mol Imaging 2014;4:385-405.
120. Zhang M, Ellenbogen RG, Kievit F, Silber JR, Stephen Z, Veiseh O. Nanoparticle for targeting brain tumors and delivery of o6-benzylguanine. In: University of Washington through its Center for Commercialization; 2014 . (ISBN No. US20140286872 A1)
121. Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, Ellenbogen RG, Park JO, Zhang M. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 2010;31:8032-42.
122. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang M. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 2010;4:4587-94.
123. Butte PV, Mamelak A, Parrish-Novak J, Drazin D, Shweikeh F, Gangalum PR, Chesnokova A, Ljubimova JY, Black K. Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus 2014;36:E1.
124. Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish-Novak J. Preclinical Validation of the Utility of BLZ-100 in Providing Fluorescence Contrast for Imaging Spontaneous Solid Tumors. Cancer Res 2015;75:4283-91.
125. Rodriguez-Devora JI, Ambure S, Shi Z-D, Yuan Y, Sun W, Xu T. Physically facilitating drug-delivery systems. Ther Deliv 2012;3:125-39.
126. Davalos RV, Rossmeisl JH, Garcia PA. Acute blood-brain barrier disruption using electrical energy based therapy. In: Virginia Tech Intellectual Properties, Inc.; 2014 . (ISBN No. US20140039489A1)
127. Qiu LB, Ding GR, Li KC, Wang XW, Zhou Y, Zhou YC, Li YR, Guo GZ. The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse. Toxicology 2010;273:29-34.
128. Braun S, Oppermann H, Mueller A, Renner C, Hovhannisyan A, Baran-Schmidt R, Gebhardt R, Hipkiss A, Thiery J, Meixensberger J, Gaunitz F. Hedgehog signaling in glioblastoma multiforme. Cancer Biol Ther 2012;13:487-95.
129. Akhtari M, Engel J. Use of functionalized magnetic nanoparticles in cancer detection and treatment. In: The Regents Of The University Of California; 2015. (ISBN No. US 9011913 B2) .
130. Yang VC, David AE. Compositions and methods for targeting tumors. In: The Regents Of The University Of Michigan; 2011. (ISBN No. US20110054236 A1) .
131. Dixit S, Miller K, Zhu Y, McKinnon E, Novak T, Kenney ME, Broome AM. Dual Receptor-Targeted Theranostic Nanoparticles for Localized Delivery and Activation of Photodynamic Therapy Drug in Glioblastomas. Mol Pharm 2015;12:3250-60.
132. Liu H-L, Fan C-H, Ting C-Y, Yeh C-K. Combining Microbubbles and Ultrasound for Drug Delivery to Brain Tumors: Current Progress and Overview. Theranostics 2014;4:432-44.
133. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage 2005;24:12-20.
134. Blomley MJK, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO. Microbubble contrast agents: a new era in ultrasound. BMJ : British Medical Journal 2001;322:1222-5.
135. Kang ST, Yeh CK. Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 2012;35:125-39.
136. Chen YC, Chiang CF, Wu SK, Chen LF, Hsieh WY, Lin WL. Targeting microbubbles-carrying TGFbeta1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors. J Control Release 2015;211:53-62.
137. Liao AH, Chou HY, Hsieh YL, Hsu SC, Wei KC, Liu HL. Enhanced Therapeutic Epidermal Growth Factor Receptor (EGFR) Antibody Delivery via Pulsed Ultrasound with Targeting Microbubbles for Glioma Treatment. Journal of Medical and Biological Engineering 2015;35:156-64.
139. Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol 2015; doi: 10.1016/j. tcb.2015.07.011.
140. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005;132:4653-62.
141. LeBlanc VC, Morin P. Exploring miRNA-Associated Signatures with Diagnostic Relevance in Glioblastoma Multiforme and Breast Cancer Patients. J Clin Med 2015;4:1612-30.
142. Hummel R, Maurer J, Haier J. MicroRNAs in brain tumors : a new diagnostic and therapeutic perspective? Mol Neurobiol 2011;44:223-34.
143. Novakova J, Slaby O, Vyzula R, Michalek J. MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 2009;386:1-5.
144. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005;65:6029-33.
145. Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M. A Systematic Review of MicroRNA in Glioblastoma Multiforme: Micro-modulators in the Mesenchymal Mode of Migration and Invasion. Molecular Neurobiology 2013;47:131-44.
146. Park JB, Lee SH, Park EK, Lee D, Yang HS, Yoo H, Kim HJ, Kim TH, Kwak HJ. Anti-cancer composition comprising microrna molecules. In: National Cancer Center; 2011 . (ISBN No. US20110124712 A1)
148. Rich JN, Kim Y, Hjelmeland A. Aptamers for tumor initiating cells. In: The Cleveland Clinic Foundation; 2014 . (ISBN No. WO2014121256 A1)
149. Bloembergen S, McLennan IJ, Jones N, Wagner R, Shermon AKG, Elsayed AR, Liu J. Aptamer bioconjugate drug delivery device. In: Ecosynthetix Ltd.; 2013 . (ISBN No. US 20130090467 A1)
150. Jatariu A, Peptu C, Popa M, Indrei A. Micro- and nanoparticles--medical applications. Rev Med Chir Soc Med Nat Iasi 2009;113:1160-9.
151. Burgess R. Medical applications of nanoparticles and nanomaterials. Stud Health Technol Inform 2009;149:257-83.
152. Irache JM. [Nanomedicine: nanoparticles with medical applications]. An Sist Sanit Navar 2008;31:7-10.
153. Dusinska M, Dusinska M, Fjellsbo L, Magdolenova Z, Rinna A, Runden Pran E, Bartonova A, Heimstad E, Harju M, Tran L, Ross B, Juillerat L, Halamoda Kenzaui B, Marano F, Boland S, Guadaginini R, Saunders M, Cartwright L, Carreira S, Whelan M, Kelin C, Worth A, Palosaari T, Burello E, Housiadas C, Pilou M, Volkovova K, Tulinska J, Kazimirova A, Barancokova M, Sebekova K, Hurbankova M, Kovacikova Z, Knudsen L, Poulsen M, Mose T, Vila M, Gombau L, Fernandez B, Castell J, Marcomini A, Pojana G, Bilanicova D, Vallotto D. Testing strategies for the safety of nanoparticles used in medical applications. Nanomedicine 2009;4:605-7.
154. to-BBB technologies BV. Company restarting as 2-BBB Medicines BV. In. The Netherlands; 2015.
155. TEDxMaastricht. Brain Train. Effective Brain Cancer Treatment: Pieter Gaillard at TEDxMaastricht. In: TEDxMaastricht, editor: Gaillard, P.; 2013 .