REFERENCES
1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 2008;89:422-9.
2. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil 2014;95:986-95.e1.
3. Richards JT, Baird MD, Tintle SM, Souza JM, Renninger CH, Potter BK. Peripheral nerve management in extremity amputations. Orthop Clin North Am 2022;53:155-66.
5. Cowley J, Resnik L, Wilken J, Smurr Walters L, Gates D. Movement quality of conventional prostheses and the DEKA Arm during everyday tasks. Prosthet Orthot Int 2017;41:33-40.
6. Salminger S, Stino H, Pichler LH, et al. Current rates of prosthetic usage in upper-limb amputees - have innovations had an impact on device acceptance? Disabil Rehabil 2022;44:3708-13.
7. Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 2007;31:236-57.
8. Burke KL, Kung TA, Hooper RC, Kemp SWP, Cederna PS. Regenerative peripheral nerve interfaces (RPNIs): current status and future direction. Plast Aesthet Res 2022;9:48.
9. Sando IC, Adidharma W, Nedic A, et al. Dermal sensory regenerative peripheral nerve interface for reestablishing sensory nerve feedback in peripheral afferents in the rat. Plast Reconstr Surg 2023;151:804e-13e.
10. Hsu E, Cohen SP. Postamputation pain: epidemiology, mechanisms, and treatment. J Pain Res 2013;6:121-36.
11. Mapplebeck JC, Beggs S, Salter MW. Molecules in pain and sex: a developing story. Mol Brain 2017;10:9.
14. Faust AE, Soletti L, Cwalina NA, et al. Development of an acellular nerve cap xenograft for neuroma prevention. J Biomed Mater Res A 2022;110:1738-48.
15. Hu Y, Ursu DC, Sohasky RA, et al. Regenerative peripheral nerve interface free muscle graft mass and function. Muscle Nerve 2021;63:421-9.
16. Ganesh Kumar N, Kung TA. Regenerative peripheral nerve interfaces for the treatment and prevention of neuromas and neuroma pain. Hand Clin 2021;37:361-71.
17. Kung TA, Langhals NB, Martin DC, Johnson PJ, Cederna PS, Urbanchek MG. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Plast Reconstr Surg 2014;133:1380-94.
18. Kubiak CA, Adidharma W, Kung TA, Kemp SWP, Cederna PS, Vemuri C. "Decreasing postamputation pain with the regenerative peripheral nerve interface (RPNI)". Ann Vasc Surg 2022;79:421-6.
19. Kubiak CA, Kemp SWP, Cederna PS, Kung TA. Prophylactic regenerative peripheral nerve interfaces to prevent postamputation pain. Plast Reconstr Surg 2019;144:421e-30e.
20. Kubiak CA, Kemp SWP, Cederna PS. Regenerative peripheral nerve interface for management of postamputation neuroma. JAMA Surg 2018;153:681-2.
21. Ganesh Kumar N, Kung TA, Cederna PS. Regenerative peripheral nerve interfaces for advanced control of upper extremity prosthetic devices. Hand Clin 2021;37:425-33.
22. Vu PP, Vaskov AK, Irwin ZT, et al. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci Transl Med 2020;12:eaay2857.
23. Vu PP, Irwin ZT, Bullard AJ, et al. Closed-loop continuous hand control via chronic recording of regenerative peripheral nerve interfaces. IEEE Trans Neural Syst Rehabil Eng 2018;26:515-26.
24. Vu PP, Vaskov AK, Lee C, et al. Long-term upper-extremity prosthetic control using regenerative peripheral nerve interfaces and implanted EMG electrodes. J Neural Eng 2023;20:026039.
25. Woo SL, Kung TA, Brown DL, Leonard JA, Kelly BM, Cederna PS. Regenerative peripheral nerve interfaces for the treatment of postamputation neuroma pain: a pilot study. Plast Reconstr Surg Glob Open 2016;4:e1038.
26. Sensinger JW, Dosen S. A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. Front Neurosci 2020;14:345.
27. Raspopovic S, Valle G, Petrini FM. Sensory feedback for limb prostheses in amputees. Nat Mater 2021;20:925-39.
28. Hart SE, Brown DL. Dermatosensory peripheral nerve interfaces: prevention of pain recurrence following sensory neurectomy. Hand Clin 2021;37:383-9.
29. Raspopovic S, Capogrosso M, Petrini FM, et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 2014;6:222ra19.
30. Svientek SR, Ursu DC, Cederna PS, Kemp SWP. Fabrication of the composite regenerative peripheral nerve interface (C-RPNI) in the adult rat. J Vis Exp 2020;156:10.3791/60841.
31. Bolívar S, Udina E. Preferential regeneration and collateral dynamics of motor and sensory neurons after nerve injury in mice. Exp Neurol 2022;358:114227.
32. Svientek SR, Wisely JP, Dehdashtian A, Bratley JV, Cederna PS, Kemp SWP. The muscle cuff regenerative peripheral nerve interface for the amplification of intact peripheral nerve signals. J Vis Exp 2022;Online ahead of print.
33. Kubiak CA, Svientek SR, Dehdashtian A, et al. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. J Neural Eng 2021;18:0460d5.
34. Siviy C, Baker LM, Quinlivan BT, et al. Opportunities and challenges in the development of exoskeletons for locomotor assistance. Nat Biomed Eng 2023;7:456-72.
35. Tariq M, Trivailo PM, Simic M. EEG-based BCI control schemes for lower-limb assistive-robots. Front Hum Neurosci 2018;12:312.
36. Reeves J, Starbuck C, Nester C. EMG gait data from indwelling electrodes is attenuated over time and changes independent of any experimental effect. J Electromyogr Kinesiol 2020;54:102461.
37. Huang J, Huo W, Xu W, Mohammed S, Amirat Y. Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition. IEEE Trans Automat Sci Eng 2015;12:1257-70.
38. Martinez-Valdes E, Negro F, Falla D, De Nunzio AM, Farina D. Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles. J Appl Physiol 2018;124:1071-9.
39. Bowen JB, Ruter D, Wee C, West J, Valerio IL. Targeted muscle reinnervation technique in below-knee amputation. Plast Reconstr Surg 2019;143:309-12.
40. Frost CM, Ursu DC, Flattery SM, et al. Regenerative peripheral nerve interfaces for real-time, proportional control of a neuroprosthetic hand. J Neuroeng Rehabil 2018;15:108.
41. Shu T, Herrera-arcos G, Taylor CR, Herr HM. Mechanoneural interfaces for bionic integration. Nat Rev Bioeng 2024:Online ahead of print.
42. Cheesborough JE, Smith LH, Kuiken TA, Dumanian GA. Targeted muscle reinnervation and advanced prosthetic arms. Semin Plast Surg 2015;29:62-72.
43. Toyoda Y, Azoury S, Bauder A, Levin LS, Kovach S. Lower extremity amputation: the emerging role of targeted muscle reinnervation (TMR) and regenerative peripheral nerve interface (RPNI). Plast Aesthet Res 2022;9:17.
44. Mioton LM, Dumanian GA, Shah N, et al. Targeted muscle reinnervation improves residual limb pain, phantom limb pain, and limb function: a prospective study of 33 major limb amputees. Clin Orthop Relat Res 2020;478:2161-7.
45. Dumanian GA, Potter BK, Mioton LM, et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg 2019;270:238-46.
46. Van Kouwenberg EA, Chiu DTW. Adipose tissue-preserved skin grafts for lower extremity defects: recommendations to optimize outcomes. Plast Reconstr Surg Glob Open 2020;8:e2584.
47. Rinker B, Fink BF, Barry NG, et al. The effect of cigarette smoking on functional recovery following peripheral nerve ischemia/reperfusion injury. Microsurgery 2011;31:59-65.
48. Rodriguez-Fontan F, Reeves B, Tuaño K, Colakoglu S, D' Agostino L, Banegas R. Tobacco use and neurogenesis: a theoretical review of pathophysiological mechanism affecting the outcome of peripheral nerve regeneration. J Orthop 2020;22:59-63.