REFERENCES
1. NCI Dictionary of Cancer Terms [Internet]. National Cancer Institute. 2011. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms [Last accessed on 12 Jun 2020].
2. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-7.
4. Glenn JD. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014;6:526.
5. Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 2013;95:2229-34.
6. Niu CC, Lin SS, Yuan LJ, Chen LH, Pan TL, et al. Identification of mesenchymal stem cells and osteogenic factors in bone marrow aspirate and peripheral blood for spinal fusion by flow cytometry and proteomic analysis. J Orthop Surg 2014;9:32.
7. Samsonraj RM, Rai B, Sathiyanathan P, Puan KJ, Rötzschke O, et al. Establishing criteria for human mesenchymal stem cell potency: establishing criteria for hMSC potency. Stem Cells 2015;33:1878-91.
8. Ben Nasr M, Vergani A, Avruch J, Liu L, Kefaloyianni E, et al. Co-transplantation of autologous MSC delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetol 2015;52:917-27.
9. Ferreira ML, Silva PC, Alvarez Silva LH, Bonfim DC, Conilho Macedo Müller LC, et al. Heterologous mesenchymal stem cells successfully treat femoral pseudarthrosis in rats. J Transl Med 2012;10:51.
10. Rodriguez RL, Frazier T, Bunnell BA, Mouton CA, March KL, et al. Arguments for a different regulatory categorization and framework for stromal vascular fraction. Stem Cells Dev 2020;29:257-62.
11. Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, et al. Adipose tissue stem cells for therapy: an update on the progress of isolation, culture, storage, and clinical application. J Clin Med 2019;8:917.
12. Lander EB, Berman MH. Autologous stromal vascular fraction: a new era of personal cell therapy. Stem Cells Res Dev Ther 2018;4:1-6.
13. Osteoarthritis Research Society International (OARSI) [Internet]. Available from: https://www.oarsi.org/ [Last accessed on 12 Jun 2020].
14. GBD Compare | IHME Viz Hub [Internet]. Available from: http://vizhub.healthdata.org/gbd-compare [Last accessed on 12 Jun 2020].
15. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ 2003;81:646-56.
17. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, et al. Osteoarthritis. Nat Rev Dis Primer 2016;2:16072.
18. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 2014;22:363-88.
19. Villalobos Córdoba FE, Izaguirre A, Almazan A, Cruz F, Pérez Jiménez FJ, et al. Articular cartilage injuries in 1,309 knee arthroscopies, a public health problem in a developing country? Osteoarthritis Cartilage 2007;15:B102.
20. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994;331:889-95.
21. Everhart JS, Campbell AB, Abouljoud MM, Kirven JC, Flanigan DC. Cost-efficacy of knee cartilage defect treatments in the United States. Am J Sports Med 2019;363546519834557.
22. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc 2020;28:670-706.
23. Thorlund JB, Juhl CB, Roos EM, Lohmander LS. Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. BMJ 2015;350:h2747.
24. Lohmander LS, Hellot S, Dreher D, Krantz EFW, Kruger DS, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial: sprifermin effects in knee osteoarthritis. Arthritis Rheumatol 2014;66:1820-31.
25. Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 2016;4:15040.
26. Poulet B, Staines KA. New developments in osteoarthritis and cartilage biology. Curr Opin Pharmacol 2016;28:8-13.
27. Wang AT, Feng Y, Jia HH, Zhao M, Yu H. Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: a concise review. World J Stem Cells 2019;11:222-35.
28. Ibarra C, Izaguirre A, Villalobos E, Masri M, Lombardero G, et al. Follow-up of a new arthroscopic technique for implantation of matrix-encapsulated autologous chondrocytes in the knee. Arthrosc J Arthrosc Relat Surg 2014;30:715-23.
29. Villalobos E, Madrazo-Ibarra A, Martínez V, Olivos-Meza A, Velasquillo C, et al. Arthroscopic matrix-encapsulated autologous chondrocyte implantation: a pilot multicenter investigation in Latin America. Cartilage 2020;11.
30. Brittberg M, Recker D, Ilgenfritz J, Saris DBF; Summit Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med 2018;46:1343-51.
31. Schuette HB, Kraeutler MJ, McCarty EC. Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthop J Sports Med 2017;5:232596711770925.
32. MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane). Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes-porcine-collagen-membrane [Last accessed on 12 Jun 2020].
33. Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 1993;27:1243-51.
34. Mitani G, Sato M, Lee JIK, Kaneshiro N, Ishihara M, et al. The properties of bioengineered chondrocyte sheets for cartilage regeneration. BMC Biotechnol 2009;9:17.
35. Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, et al. Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun 2006;349:723-31.
36. Sato M, Yamato M, Hamahashi K, Okano T, Mochida J. Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 2014;297:36-43.
37. Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 2014;1840:2414-40.
38. Barron V, Merghani K, Shaw G, Coleman CM, Hayes JS, et al. Evaluation of cartilage repair by mesenchymal stem cells seeded on a PEOT/PBT scaffold in an osteochondral defect. Ann Biomed Eng 2015;43:2069-82.
39. Qi BW, Yu AX, Zhu SB, Zhou M, Wu G. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med 2013;238:23-30.
40. Kim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, et al. Comparative matched-pair analysis of the injection versus implantation of mesenchymal stem cells for knee osteoarthritis. Am J Sports Med 2015;43:2738-46.
41. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. The Knee 2006;13:184-8.
42. Dhollander A, Verdonk P, Verdonk R. Treatment of painful, irreparable partial meniscal defects with a polyurethane scaffold: midterm clinical outcomes and survival analysis. Am J Sports Med 2016;44:2615-21.
43. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints--Part I: tibial surface of the knee. J Biomech Eng 1983;105:216-25.
44. Baratz ME, Fu FH, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report. Am J Sports Med 1986;14:270-5.
45. Roos H, Laurén M, Adalberth T, Roos EM, Jonsson K, et al. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 1998;41:687-93.
46. Leroy A, Beaufils P, Faivre B, Steltzlen C, Boisrenoult P, et al. Actifit® polyurethane meniscal scaffold: MRI and functional outcomes after a minimum follow-up of 5 years. Orthop Traumatol Surg Res OTSR 2017;103:609-14.
47. Schüttler KF, Haberhauer F, Gesslein M, Heyse TJ, Figiel J, et al. Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 2016;24:1478-84.
48. Angele P, Johnstone B, Kujat R, Zellner J, Nerlich M, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res A 2008;85:445-55.
49. Dutton AQ, Choong PF, Goh JCH, Lee EH, Hui JHP. Enhancement of meniscal repair in the avascular zone using mesenchymal stem cells in a porcine model. J Bone Joint Surg Br 2010;92:169-75.
50. Olivos-Meza A, Pérez Jiménez FJ, Granados-Montiel J, Landa-Solís C, Cortés González S, et al. First clinical application of polyurethane meniscal scaffolds with mesenchymal stem cells and assessment of cartilage quality with T2 mapping at 12 months. Cartilage 2019;194760351985241.
52. Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, et al. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010;38:215-24.
53. Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev 2014;23:290-304.
54. Liang Y, Duan L, Xiong J, Zhu W, Liu Q, et al. E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther 2016;18:105.
55. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010;24:1173-85.
56. Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017;7:180-95.
57. Yu XM, Meng HY, Yuan XL, Wang Y, Guo QY, et al. MicroRNAs’ involvement in osteoarthritis and the prospects for treatments. Evid Based Complement Alternat Med 2015;2015:1-13.
58. Toh WS. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Dev Biol 2017;9.
59. Toghraie F, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, et al. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med 2012;15:495-9.
60. Zhou J, Wang Y, Liu Y, Zeng H, Xu H, et al. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing. J Cell Biochem 2019;120:2198-212.
61. Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 2005;13:845-53.
62. Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Concise review: the use of adipose-derived stromal vascular fraction cells and platelet rich plasma in regenerative plastic surgery. Stem Cells 2017:117-34.
63. MEDIPOST - The Future of Biotechnology [Internet]. Available from: http://www.medi-post.com/front/eng/stemcell/cartistem.do [Last accessed on 12 Jun 2020].
64. Park Y, Ha C, Lee C, Yoon YC, Park Y. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med 2017;6:613-21.
65. Congenital anomalies [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies [Last accessed on 12 Jun 2020].
68. Kumar V, Abbas A, Aster J. Robbins basic pathology. 10th Edition. Elsevier; 2017. p. 952.
69. Suutarla S, Rautio J, Ritvanen A, Ala-Mello S, Jero J, et al. Microtia in Finland: comparison of characteristics in different populations. Int J Pediatr Otorhinolaryngol 2007;71:1211-7.
70. Eavey RD. Microtia and significant auricular malformation. Ninety-two pediatric patients. Arch Otolaryngol Head Neck Surg 1995;121:57-62.
71. Kelley PE, Scholes MA. Microtia and congenital aural atresia. Otolaryngol Clin North Am 2007;40:61-80. vi
72. Aguinaga-Ríos M, Frías S, Arenas-Aranda DJ, Morán-Barroso VF. Microtia-atresia: aspectos clínicos, genéticos y genómicos. Bol Méd Hosp Infant México 2014;71:387-95.
73. Anderka MT, Lin AE, Abuelo DN, Mitchell AA, Rasmussen SA. Reviewing the evidence for mycophenolate mofetil as a new teratogen: case report and review of the literature. Am J Med Genet A 2009;149A:1241-8.
74. González-Andrade F, López-Pulles R, Espín VH, Paz-y-Miño C. High altitude and microtia in Ecuadorian patients. J Neonatal-Perinat Med 2010;3:109-16.
75. Luquetti DV, Leoncini E, Mastroiacovo P. Microtia-anotia: a global review of prevalence rates. Birth Defects Res A Clin Mol Teratol 2011;91:813-22.
76. Tanzer RC. Total reconstruction of the external ear. Plast Reconstr Surg Transplant Bull 1959;23:1-15.
77. Brent B. The correction of mi-rotia with autogenous cartilage grafts: I. The classic deformity? Plast Reconstr Surg 1980;66:1-12.
79. Vacanti CA, Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 1994;27:263-76.
80. Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, et al. Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 1999;103:1111-9.
81. Otto IA, Melchels FPW, Zhao X, Randolph MA, Kon M, et al. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 2015;7:032001.
82. Cohen BP, Hooper RC, Puetzer JL, Nordberg R, Asanbe O, et al. Long-term morphological and microarchitectural stability of tissue-engineered, patient-specific auricles in vivo. Tissue Eng Part A 2016;22:461-8.
83. Liao HT, Zheng R, Liu W, Zhang WJ, Cao Y, et al. Prefabricated, ear-shaped cartilage tissue engineering by scaffold-free porcine chondrocyte membrane. Plast Reconstr Surg 2015;135:313e.
84. Zhou G, Jiang H, Yin Z, Liu Y, Zhang Q, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 2018;28:287-302.
85. Kamil SH, Vacanti MP, Vacanti CA, Eavey RD. Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 2004;114:2187-90.
86. Domm C, Schünke M, Christesen K, Kurz B. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage 2002;10:13-22.
87. Gu Y, Kang N, Dong P, Liu X, Wang Q, et al. Chondrocytes from congenital microtia possess an inferior capacity for in vivo cartilage regeneration to healthy ear chondrocytes. J Tissue Eng Regen Med 2018;12:e1737-46.
88. Hendriks J, Riesle J, Ca van B. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med 2007;1:170-8.
89. Cai Z, Pan B, Jiang H, Zhang L. Chondrogenesis of human adipose-derived stem cells by in vivo co-graft with auricular chondrocytes from Microtia. Aesthetic Plast Surg 2015;39:431-9.
90. Goh BS, Che Omar SN, Ubaidah MA, Saim L, Sulaiman S, et al. Chondrogenesis of human adipose derived stem cells for future microtia repair using co-culture technique. Acta Otolaryngol (Stockh) 2017;137:432-41.
91. Kang N, Liu X, Guan Y, Wang J, Gong F, et al. Effects of co-culturing BMSC and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage. Biomaterials 2012;33:4535-44.
92. Morrison KA, Cohen BP, Asanbe O, Dong X, Harper A, et al. Optimizing cell sourcing for clinical translation of tissue engineered ears. Biofabrication 2016;9:015004.
93. Pleumeekers MM, Nimeskern L, Koevoet WLM, Karperien M, Stok KS, et al. Cartilage regeneration in the head and neck area: combination of ear or nasal chondrocytes and mesenchymal stem cells improves cartilage production. Plast Reconstr Surg 2015;136:762e-74.
94. Zhang X, Xue K, Zhou J, Xu P, Huang H, et al. Chondrogenic differentiation of bone marrow-derived stem cells cultured in the supernatant of elastic cartilage cells. Mol Med Rep 2015;12:5355-60.
95. Cohen BP, Bernstein JL, Morrison KA, Spector JA, Bonassar LJ. Tissue engineering the human auricle by auricular chondrocyte-mesenchymal stem cell co-implantation. In: Lammi MJ, editor. PLoS One 2018. p. e0202356.
96. Arrendares S, Lisker R. Análisis genético del labio y paladar hendido solo. Estudio en población mexicana. Rev Invest Clin 1974;26.
97. Trigos-Micoló I, Figueroa MEG y L. Análisis de la incidencia, prevalencia y atención del labio y paladar hendido en México. Cir Plástica 2003;13:35-9.
98. Taher A. Cleft lip and palate: lesions, pathophysiology, and primary treatment. J Craniofac Surg 2001;12:200.
99. Vig KW. Alveolar bone grafts: the surgical/orthodontic management of the cleft maxilla. Ann Acad Med Singapore 1999;28:721-7.
101. Lilja J, Kalaaji A, Friede H, Elander A. Combined bone grafting and delayed closure of the hard palate in patients with unilateral cleft lip and palate: facilitation of lateral incisor eruption and evaluation of indicators for timing of the procedure. Cleft Palate Craniofac J 2000;37:98-105.
102. da Silva Filho OG, Teles SG, Ozawa TO, Filho LC. Secondary bone graft and eruption of the permanent canine in patients with alveolar clefts: literature review and case report. Angle Orthod 2000;70:174-8.
103. Eufinger H, Leppänen H. Iliac crest donor site morbidity following open and closed methods of bone harvest for alveolar cleft osteoplasty. J Craniomaxillofac Surg 2000;28:31-8.
104. Dawson KH, Egbert MA, Myall RW. Pain following iliac crest bone grafting of alveolar clefts. J Craniomaxillofac Sur 1996;24:151-4.
105. Steinberg B, Padwa BL, Boyne P, Kaban L. State of the art in oral and maxillofacial surgery: treatment of maxillary hypoplasia and anterior palatal and alveolar clefts. Cleft Palate Craniofac J 1999;36:283-91.
106. Schliephake H, Dard M, Planck H, Hierlemann H, Stern U. Alveolar ridge repair using resorbable membranes and autogenous bone particles with simultaneous placement of implants: an experimental pilot study in dogs. Int J Oral Maxillofac Implants 2000;15:364-73.
107. Rüdiger SG, Ehmke B, Hommens A, Karch H, Flemmig TF. Guided tissue regeneration using a polylactic acid barrier. Part I: Environmental effects on bacterial colonization. J Clin Periodontol 2003;30:19-25.
108. Mellonig JT, Nevins M, Sanchez R. Evaluation of a bioabsorbable physical barrier for guided bone regeneration. Part II. Material and a bone replacement graft. Int J Periodontics Restorative Dent 1998;18:129-37.
109. Lekovic V, Camargo PM, Weinlaender M, Kenney EB, Vasilic N. Combination use of bovine porous bone mineral, enamel matrix proteins, and a bioabsorbable membrane in intrabony periodontal defects in humans. J Periodontol 2001;72:583-9.
110. Piette E, Alberius P, Samman N, Linde A. Experience with e-PTFE membrane application to bone grafting of cleft maxilla. Int J Oral Maxillofac Surg 1995;24:327-32.
111. Puumanen K, Kellomäki M, Ritsilä V, Böhling T, Törmälä P, et al. A novel bioabsorbable composite membrane of Polyactive 70/30 and bioactive glass number 13--93 in repair of experimental maxillary alveolar cleft defects. J Biomed Mater Res B Appl Biomater 2005;75:25-33.
112. Aichelmann-Reidy ME, Heath CD, Reynolds MA. Clinical evaluation of calcium sulfate in combination with demineralized freeze-dried bone allograft for the treatment of human intraosseous defects. J Periodontol 2004;75:340-7.
113. Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, et al. Multi-center clinical comparison of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) and ABM in human periodontal osseous defects. 6-month results. J Periodontol 2000;71:1671-9.
114. Kiliç AR, Efeoğlu E, Yilmaz S. Guided tissue regeneration in conjunction with hydroxyapatite-collagen grafts for intrabony defects. A clinical and radiological evaluation. J Clin Periodontol 1997;24:372-83.
115. Rabie AB, Chay SH. Clinical applications of composite intramembranous bone grafts. Am J Orthod Dentofac Orthop 2000;117:375-83.
116. Méndez R, López-Cedrún JL, Patiño B, Vázquez I, Martín-Sastre R, et al. Platelet-rich plasma (platelet gel) in secondary alveoloplasty in cleft patients. Cir Pediatr 2006;19:23-6.
117. Segura-Castillo JL, Aguirre-Camacho H, González-Ojeda A, Michel-Perez J. Reduction of bone resorption by the application of fibrin glue in the reconstruction of the alveolar cleft. J Craniofac Surg 2005;16:105-12.
118. Zybutz MD, Laurell L, Rapoport DA, Persson GR. Treatment of intrabony defects with resorbable materials, non-resorbable materials and flap debridement. J Clin Periodontol 2000;27:169-78.
119. Boyne PJ. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. J Bone Joint Surg Am 2001;83:S146-50.
120. Peled M, Aizenbud D, Horwitz J, Machtei EE. Treatment of osseous cleft palate defects: a preliminary evaluation of novel treatment modalities. Cleft Palate-Craniofacial J 2005;42:344-8.
121. Trejo PM, Weltman R, Caffesse R. Treatment of intraosseous defects with bioabsorbable barriers alone or in combination with decalcified freeze-dried bone allograft: a randomized clinical trial. J Periodontol 2000;71:1852-61.
122. Murphy KG, Gunsolley JC. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann Periodontol 2003;8:266-302.
123. Carpio L, Loza J, Lynch S, Genco R. Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers. J Periodontol 2000;71:1743-9.
124. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 2003;8:227-65.
125. Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, et al. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann Biomed Eng 2017;45:45-57.
126. Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl 2017;32:598-611.
127. Martín-Del-Campo M, Rosales-Ibañez R, Rojo L. Biomaterials for Cleft Lip and Palate Regeneration. Int J Mol Sci 2019;20.
128. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Mater Basel Switz 2010;3:3867-910.
129. Janssen NG, de Ruiter AP, van Hout WMMT, van Miegem V, Gawlitta D, et al. Microstructured β-tricalcium phosphate putty versus autologous bone for repair of alveolar clefts in a goat model. Cleft Palate-Craniofacial J 2017;54:699-706.
130. Al-Ahmady HH, Abd Elazeem AF, Bellah Ahmed NEM, Shawkat WM, Elmasry M, et al. Combining autologous bone marrow mononuclear cells seeded on collagen sponge with Nano Hydroxyapatite, and platelet-rich fibrin: reporting a novel strategy for alveolar cleft bone regeneration. J Craniomaxillofac Surg 2018;46:1593-600.
131. Batool F, Strub M, Petit C, Bugueno IM, Bornert F, et al. Periodontal tissues, maxillary jaw bone, and tooth regeneration approaches: from animal models analyses to clinical applications. Nanomater Basel Switz 2018;8.
132. Yoshioka M, Tanimoto K, Tanne Y, Sumi K, Awada T, et al. Bone regeneration in artificial jaw cleft by use of carbonated hydroxyapatite particles and mesenchymal stem cells derived from iliac bone. Int J Dent 2012;2012:352510.
133. Tanimoto K, Sumi K, Yoshioka M, Oki N, Tanne Y, et al. Experimental tooth movement into new bone area regenerated by use of bone marrow-derived mesenchymal stem cells. Cleft Palate Craniofac J 2015;52:386-94.
134. Sumi K, Abe T, Kunimatsu R, Oki N, Tsuka Y, et al. The effect of mesenchymal stem cells on chemotaxis of osteoclast precursor cells. J Oral Sci 2018;60:221-5.
135. Ahn G, Lee JS, Yun WS, Shim JH, Lee UL. Cleft alveolus reconstruction using a three-dimensional printed bioresorbable scaffold with human bone marrow cells. J Craniofac Surg 2018;29:1880-3.
136. Pourebrahim N, Hashemibeni B, Shahnaseri S, Torabinia N, Mousavi B, et al. A comparison of tissue-engineered bone from adipose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs. Int J Oral Maxillofac Surg 2013;42:562-8.
137. Lee JM, Kim HY, Park JS, Lee DJ, Zhang S, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med 2019;13:319-27.