REFERENCES
1. Akinbami BO. Reconstruction of Continuity Defects of the Mandible with Non-vascularized Bone Grafts. Systematic Literature Review. Craniomaxillofac Trauma Reconstr 2016;9:195-205.
2. Rana M, Warraich R, Kokemüller H, Lemound J, Essig H, et al. Reconstruction of mandibular defects - clinical retrospective research over a 10-year period. Head Neck Oncol 2011;3:23.
3. Brierly GI, Tredinnick S, Lynham A, Woodruff MA. Critical sized mandibular defect regeneration in preclinical in vivo models. Curr Molecular Bio Rep 2016;2:83-9.
4. Nuttegg CM, Hidalgo-Bastida AL. Scaffolds for Mandibular Reconstruction. In: Mozafari M, Sefat F, Atala A, editors. Handbook of Tissue Engineering Scaffolds: Volume One. Woodhead Publishing; 2019. pp. 347-68.
5. Murphy C, Kearns G, Sleeman D, Cronin M, Allen P. The clinical relevance of orthognathic surgery on quality of life. Int J Oral Maxillofac Surg 2011;40:926-30.
6. Wong R, Tideman H, Kin L, Merkx M. Biomechanics of mandibular reconstruction: a review. Int J Oral Maxillofac Surg 2010;39:313-9.
7. Zou W, Chen X. Osteogenesis and Ototoxicity of a Novel Preparation of Autogenous Bone Cement. Otolaryngol Head Neck Surg 2014;151:1020-7.
8. Miles BA, Goldstein DP, Gilbert RW, Gullane PJ. Mandible reconstruction. Curr Opin Otolaryngol Head Neck Surg 2010;18:317-22.
9. Pandit N, Pandit I. Autogenous bone grafts in periodontal practice: a literature review. J Int Clin Dent Res Organ 2016;8:27-33.
10. Kumar G, Narayan B. Morbidity at Bone Graft Donor Sites. In: Banaszkiewicz P, Kader D, editors. Classic Papers in Orthopaedics. Springer, London: 2014. pp. 503-5.
11. Momoh AO, Yu P, Skoracki RJ, Liu S, Feng L, et al. A prospective cohort study of fibula free flap donor-site morbidity in 157 consecutive patients. Plast Reconstr Surg 2011;128:714-20.
12. De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007;89:649-58.
13. Wang W, Yeung KWK. Bone Grafts and Bone Substitutes for Bone Defect Management. Orthopedic Biomater 2017:495-545.
15. Wu SH, Li Y, Zhang YQ, Li XK, Yuan CF, et al. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs 2013;37:E191-201.
16. Decking R, Reuter P, Huttner M, Puhl W, Claes LE, et al. Surface composition analysis of failed cementless CoCr- and Ti-base-alloy total hip implants. J Biomed Mater Res B Appl Biomater 2003;64:99-106.
17. Meneghini RM, Daluga A, Soliman M. Mechanical stability of cementless tibial components in normal and osteoporotic bone. J Knee Surg 2011;24:191-6.
18. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics 2002;25:S571-8.
20. Wang KH, Inman JC, Hayden RE. Modern concepts in mandibular reconstruction in oral and oropharyngeal cancer. Curr Opin Otolaryngol Head Neck Surg 2011;19:119-24.
21. Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials 2019;12:E568.
22. Rahman S, Nagrath M, Ponnusamy S, Arany P. Nanoscale and macroscale scaffolds with controlled-release polymeric systems for dental craniomaxillofacial tissue engineering. Materials 2018;11:1478.
25. Desai SC, Sclaroff A, Nussenbaum B. Use of recombinant human bone morphogenetic protein 2 for mandible reconstruction. JAMA Facial Plast Surg 2013;15:204-9.
26. Schlieve T, Hull W, Miloro M, Kolokythas A. Is immediate reconstruction of the mandible with nonvascularized bone graft following resection of benign pathology a viable treatment option? J Oral Maxillofac Surg 2015;73:541-9.
27. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001;10:S96-101.
28. Melville JC, Tursun R, Green JM, Marx RE. Reconstruction of a post-traumatic maxillary ridge using a radial forearm free flap and immediate tissue engineering (bone morphogenetic protein, bone marrow aspirate concentrate, and cortical-cancellous bone): case report. J Oral Maxillofac Surg 2017;75:438.e1-6.
30. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012;8:114-24.
31. Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair. Chir Organi Mov 2008;92:161-8.
32. Dawson DR, El-Ghannam A, Van Sickels JE, Naung NY. Tissue Engineering: What is New? Dental Clinics 2019;63:433-45.
33. Khan SN, Cammisa Jr FP, Sandhu HS, Diwan AD, Girardi FP, et al. The biology of bone grafting. J Am Acad Orthop Surg 2005;13:77-86.
35. Tabatabaei FS, Motamedian SR, Gholipour F, Khosraviani K, Khojasteh A. Craniomaxillofacial Bone Engineering by Scaffolds Loaded with Stem Cells: A Systematic Review. J Den Sch 2012;30:113-30.
36. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011; doi: 10.1155/2011/290602.
37. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol 2011;2:403-30.
38. Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015;7:657-68.
39. Yu J, Xia H, Ni QQ. A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering. J Mater Sci 2018;53:4734-44.
40. Ghayor C, Weber FE. Osteoconductive microarchitecture of bone substitutes for bone regeneration revisited. Front Physiol 2018;9:960.
41. Cornell CN, Lane JM. Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res 1998;355:S267-73.
42. Ge Z, Jin Z, Cao T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed Mater 2008;3:022001.
43. Stanton DC, Liu F, Yu JW, Mistretta MC. Use of bioresorbable plating systems in paediatric mandible fractures. J Craniomaxillofac Surg 2014;42:1305-9.
44. Park YW. Bioabsorbable osteofixation for orthognathic surgery. Maxillofac Plast Reconstr Surg 2015;37:6.
45. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. In: Williams DF, editor. The Biomaterials: Silver Jubilee Compendium 2000. pp. 175-89.
46. Wang X, Xu S, Zhou S, Xu W, Leary M, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 2016;83:127-41.
47. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys 1998;20:92-102.
48. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite - Past, present, and future in bone regeneration. Bone Tissue Regenerat Insights 2016;7:BTRI-S36138.
49. Walmsley GG, Ransom RC, Zielins ER, Leavitt T, Flacco JS, et al. Stem cells in bone regeneration. Stem Cell Rev Rep 2016;12:524-9.
50. Baier Leach J, Bivens KA, Patrick Jr CW, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 2003;82:578-89.
51. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 2000;38:211-8.
52. Zhang R, Ma PX. Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999;44:446-55.
53. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011;32:9622-9.
54. Seyedjafari E, Soleimani M, Ghaemi N, Shabani I. Nanohydroxyapatite-coated electrospun poly (l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 2010;11:3118-25.
55. Cai YZ, Wang LL, Cai HX, Qi YY, Zou XH, et al. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. J Biomed Mater Res A 2010;95:49-57.
56. Jahan K, Tabrizian M. Composite biopolymers for bone regeneration enhancement in bony defects. Biomater Sci 2015;4:25-39.
57. Herford AS, Lu M, Buxton AN, Kim J, Henkin J, et al. Recombinant Human Bone Morphogenetic Protein 2 Combined With an Osteoconductive Bulking Agent for Mandibular Continuity Defects in Nonhuman Primates. Journal of Oral and Maxillofacial Surgery 2012;70:703-16.
58. Lindhe J, Cecchinato D, Donati M, Tomasi C, Liljenberg B. Ridge preservation with the use of deproteinized bovine bone mineral. Clin Oral Implants Res 2014;25:786-90.
59. Stavropoulos A, Kostopoulos L, Mardas N, Nyengaard JR, Karring T. Deproteinized bovine bone used as an adjunct to guided bone augmentation: an experimental study in the rat. Clin Implant Dent Relat Res 2001;3:156-65.
60. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999;14:835-40.
61. Lopez CD, Diaz-Siso JR, Witek L, Bekisz JM, Cronstein BN, et al. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. J Surg Res 2018;223:115-22.
62. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 2012;8:1401-21.
63. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35:4026-34.
64. Yuan J, Zhang WJ, Liu G, Wei M, Qi ZL, et al. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Eng Part A 2010;16:1385-94.
65. Nolff MC, Gellrich NC, Hauschild G, Fehr M, Bormann KH, et al. Comparison of two β-tricalcium phosphate composite grafts used for reconstruction of mandibular critical size bone defects. Vet Comp Orthopaed 2009;22:96-102.
66. Schliephake H, Knebel JW, Aufderheide M, Tauscher M. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Maxillofac Surg 2001;30:531-7.
67. Hart LR, Li S, Sturgess C, Wildman R, Jones JR, et al. 3D printing of biocompatible supramolecular polymers and their composites. ACS Appl Mater Inter 2016;8:3115-22.
68. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, et al. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 2015;8:5744-94.
69. Begam H, Nandi SK, Kundu B, Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. Mat Sci Eng C 2017;70:856-69.
70. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003;21:1025-32.
71. Gardin C, Ricci S, Ferroni L, Guazzo R, Sbricoli L, et al. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures. PLoS One 2015;10:e0132344.
72. Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 2005;16:329-45.
73. Kakabadze A, Mardaleishvili K, Loladze G, Karalashvili L, Chutkerashvili G, et al. Reconstruction of mandibular defects with autogenous bone and decellularized bovine bone grafts with freeze-dried bone marrow stem cell paracrine factors. Oncol Lett 2017;13:1811-8.
74. Scarano Antonio, Felice Lorusso, Giorgio Staiti, Bruna Sinjari, et al. “Sinus augmentation with biomimetic nanostructured matrix: tomographic, radiological, histological and histomorphometrical results after 6 months in humans.”. Front Physiol 2017;8:565.
76. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004;25:4749-57.
77. Cai B, Jiang N, Zhang L, Huang J, Wang D, et al. Nano-hydroxyapatite/polyamide66 composite scaffold conducting osteogenesis to repair mandible defect. J Bioact Compat Pol 2019;34:72-82.
78. Xiong Y, Ren C, Zhang B, Yang H, Lang Y, et al. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int J Nanomed 2014;9:485-94.
79. Zhu W, Qu X, Zhu J, Ma X, Patel S, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 2017;124:106-15.
80. Bai Renu Geetha, Kasturi Muthoosamy, Sivakumar Manickam, Ali Hilal-Alnaqbi. “Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering.”. Int J Nanomed 2019;14:5753.
81. Prasadh S, Suresh S, Wong R. Osteogenic potential of graphene in bone tissue engineering scaffolds. Materials 2018;11:1430.
83. Jaquiéry C, Schaeren S, Farhadi J, Mainil-Varlet P, Kunz C, et al. In vitro osteogenic differentiation and in vivo bone-forming capacity of human isogenic jaw periosteal cells and bone marrow stromal cells. Ann Surg 2005;242:859.
84. Frank O, Heim M, Jakob M, Barbero A, Schäfer D, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 2002;85:737-46.
85. Chanchareonsook N, Junker R, Jongpaiboonkit L, Jansen JA. Tissue-engineered mandibular bone reconstruction for continuity defects: a systematic approach to the literature. Tissue Eng Part B Rev 2013;20:147-62.
86. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 1997;138:4456-62.
87. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344:385-6.
88. Liao HT, Chen CT. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells 2014;6:288-95.
89. Bakhtiar H, Mazidi A, Asl SM, Ellini MR, Moshiri A, et al. The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 2018;7:249-68.
90. Raspini G, Wolff J, Helminen M, Raspini G, Raspini M, et al. Dental stem cells harvested from third molars combined with bioactive glass can induce signs of bone formation in vitro. J Oral Maxillofac Res 2018;9:e2.
91. Spagnuolo G, Codispoti B, Marrelli M, Rengo C, Rengo S, et al. Commitment of oral-derived stem cells in dental and maxillofacial applications. Dent J (Basel) 2018;6:E72.
92. Marukawa E, Asahina I, Oda M, Seto I, Alam MI, et al. Bone regeneration using recombinant human bone morphogenetic protein-2 (rhBMP-2) in alveolar defects of primate mandibles. British J Oral Maxil Surg 2001;39:452-9.
93. Jiang X, Gittens SA, Chang Q, Zhang X, Chen C, et al. The use of tissue-engineered bone with human bone morphogenetic protein-4-modified bone-marrow stromal cells in repairing mandibular defects in rabbits. Int J Oral Maxillofac Surg 2006;35:1133-9.
94. Zhou M, Peng X, Mao C, Xu F, Hu M, et al. Primate mandibular reconstruction with prefabricated, vascularized tissue-engineered bone flaps and recombinant human bone morphogenetic protein-2 implanted in situ. Biomaterials 2010;31:4935-43.
95. Chen B, Lin H, Wang J, Zhao Y, Wang B, et al. Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 2007;28:1027-35.
96. Kokorina NA, Lewis Jr JS, Zakharkin SO, Krebsbach PH, Nussenbaum B. rhBMP-2 has adverse effects on human oral carcinoma cell lines in vivo. The Laryngoscope 2012;122:95-102.
97. Lee EJ, Kim HE. Accelerated bony defect healing by chitosan/silica hybrid membrane with localized bone morphogenetic protein-2 delivery. Mat Sci Eng C 2016;59:339-45.
98. Lu H, Kawazoe N, Kitajima T, Myoken Y, Tomita M, et al. Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials 2012;33:6140-6.
99. Quinlan E, López-Noriega A, Thompson E, Kelly HM, Cryan SA, et al. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release 2015;198:71-9.
100. Seo BB, Choi H, Koh JT, Song SC. Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2. J Control Release 2015;209:67-76.
101. Herford AS, Boyne PJ, Williams RP. Clinical applications of rhBMP-2 in maxillofacial surgery. J Calif Dent Assoc 2007;35:335-41.
102. Herford AS, Boyne PJ. Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxil Surg 2008;66:616-24.
103. Cicciù M, Herford AS, Stoffella E, Cervino G, Cicciù D. Protein-signaled guided bone regeneration using titanium mesh and Rh-BMP2 in oral surgery: a case report involving left mandibular reconstruction after tumor resection. Open Dent J 2012;6:51.
104. Jansen JA, Vehof JW, Ruhe PQ, Kroeze-Deutman H, Kuboki Y, et al. Growth factor-loaded scaffolds for bone engineering. J Control Release 2005;101:127-36.
105. Behr B, Sorkin M, Lehnhardt M, Renda A, Longaker MT, et al. A comparative analysis of the osteogenic effects of BMP-2, FGF-2, and VEGFA in a calvarial defect model. Tissue Eng Part A 2012;18:1079-86.
106. Kinsella CR, Cray JJ, Durham EL, Burrows AM, Vecchione L, et al. Recombinant human bone morphogenetic protein-2-induced craniosynostosis and growth restriction in the immature skeleton. Plast Reconstr Surg 2011;127:1173-81.
107. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 2011;11:471-91.
108. Spiro AS, Timo Beil F, Baranowsky A, Barvencik F, Schilling AF, et al. BMP-7-induced ectopic bone formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice. J Orthop Res 2010;28:785-91.
109. Mediero A, Wilder T, Perez-Aso M, Cronstein BN. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J 2015;29:1577-90.
110. Mediero A, Kara FM, Wilder T, Cronstein BN. Adenosine A2A receptor ligation inhibits osteoclast formation. Am J Pathol 2012;180:775-86.
111. Scheller EL, Villa-Diaz LG, Krebsbach PH. Gene therapy: implications for craniofacial regeneration. J Craniofac Surg 2012;23:333.
112. Rabie AB, Dai J, Xu R. Recombinant AAV-mediated VEGF gene therapy induces mandibular condylar growth. Gene Ther 2007;14:972.
113. Rios HF, Lin Z, Oh B, Park CH, Giannobile WV. Cell-and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 2011;82:1223-37.
114. Chatterjee A, Singh N, Saluja M. Gene therapy in periodontics. J Indian Soc Periodontol 2013;17:156.
115. Fliefel R, Kühnisch J, Ehrenfeld M, Otto S. Gene therapy for bone defects in oral and maxillofacial surgery: a systematic review and meta-analysis of animal studies. Stem Cells Dev 2017;26:215-30.
117. Fischer J, Kolk A, Pautke C, Warnke PH, Plank C, et al. Future of local bone regeneration-protein versus gene therapy. J Cranio Maxill Surg 2011;39:54-64.
118. Franceschi RT, Yang S, Rutherford RB, Krebsbach PH, Zhao M, et al. Gene therapy approaches for bone regeneration. Cells Tissues Organs 2004;176:95-108.
119. Luo J, Sun MH, Kang Q, Peng Y, Jiang W, et al. Gene therapy for bone regeneration. Curr Gene Ther 2005;5:167-79.
120. Balmayor ER, van Griensven M. Gene therapy for bone engineering. Front Bioeng Biotechnol 2015;3:9.