REFERENCES
1. Koerner S, Adams D, Harper SL, Black JM, Langemo DK. Use of thermal imaging to identify deep-tissue pressure inury on admission reduces clinical and fianancial burdens of hospital-acquired pressure injuries. Adv Skin Wound Care 2019;32:312-20.
2. Theuvenet WJ, Koeyers GF, Borghouts MH. Thermographic assessment of perforating arteries: a preoperative screening method for fasciocutaneous and musculocutaneous flaps. Scand J Plast Reconstr Surg 1986;20:25-9.
4. de Weerd L, Weum S, Mercer JB. The value of dynamic infrared thermography (DIRT) in perforator selection and planning of free DIEP flaps. Ann Plast Surg 2009;63:274-9.
5. Muntean MV, Strilciuc S, Ardelean F, Georgescu AV. Dynamic infrared mapping of cutaneous perforators. J Xiangya Med 2018;3:16.
6. Pereira N, Valenzuela D, Mangelsdorff G, Kufeke M, Roa R. Detection of perforators for free flap planning using smartphone thermal imaging: a concordance study with computed tomographic angiography in 120 perforators. Plast Reconstr Surg 2018;141:787-92.
7. Muntean MV, Achimas-Cadariu PA. Detection of perforators for free flap planning using smartphone thermal imaging: a concordance study with computed tomographic angiography in 120 perforators. Plast Reconstr Surg 2018;142:604e.
8. Tenorio X, Mahajan AL, Elias B, van Riempst JS, Wettstein, et al. Locating perforator vessels by dynamic infrared imaging and flow doppler with no thermal cold challenge. Ann Plast Surg 2011;67:143-6.
9. Saint Cyr M, Wong C, Schaverien M, Mojallal A, Rohrich RJ. The perforasome theory: vascular anatomy and clinical applications. Plast Reconstr Surg 2009;124:1529-44.
10. Sheena Y, Jennison T, Hardwicke JT, Titley OG. Detection of perforators using thermal imaging. Plast Reconstr Surg 2013;132:1603-10.
11. Hardwicke JT, Osmani O, Skillman JM. Detection of perforators using smartphonethermal imaging. Plast Reconstr Surg 2016;137:39-41.
12. Pereira N. Reply: detection of perforators for free flap planning using smartphone thermal imaging: a concordance study with computed tomographic angiography in 120 perforators. Plast Reconstr Surg 2018;142:605e.
13. de Weerd L, Mercer JB, Setsá LB. Intraoperative dynamic infrared thermography and free-flap surgery. Ann Plast Surg 2006;57:279-84.
14. Itoh Y, Arai K. Use of recovery-enhanced thermography to localize cutaneous perforators. Ann Plast Surg 1995;34:507-11.
15. Masia J, Kosutic D, Clavero D, Larrañaga J, Vives L, et al. Preoperative computed tomographic angiogram for deep inferior epigastric artery perforator flap breast reconstruction. J Reconstr Microsurg 2010;26:21-8.
16. Masia J, Kosutic D, Cervelli D, Clavero JA, Monill JM, et al. In search of the ideal method in perforator mapping: noncontrast magnetic resonance imaging. J Reconstr Microsurg 2010;26:29-35.
17. Hallock GG. Doppler sonography and color duplex imaging for planning a perforator flap. Clin Plast Surg 2003;30:347-57.
18. Chubb D, Rozen WM, Whitaker IS, Ashton MW. Digital thermographic photography (“thermal imaging”) for preoperative perforator mapping. Ann Plast Surg 2011;66:324-5.
19. Holm C, Tegeler J, Mayr M, Becker A, Pfeiffer UJ, et al. Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience. Microsurgery 2002;22:278-87.
20. Muntean MV, Ardelean F, Strilciuc S, Pestean C, Georgescu AV, et al. Flap warming improves intraoperative indocyanine green angiography (ICGA) assessment of perfusion. an experimental study. J Plast Reconstr Aesthet Surg 2019;72:1150-6.
21. Pereira N, Hallock GG. SmartPhone thermagraphy for lower extremity local flap perforator mapping. J Reconstr Microsurg 2020. pub pend