1. Zheng, J.; Qin, C.; Wu, T.; et al. High-performance LiMnPO4/C nanoplates synthesized by negative pressure immersion and a solid state reaction using nanoporous Mn2O3 precursors. J. Mater. Chem. A. 2015, 3, 15299-306.
2. Satou, Y.; Komine, S.; Takai, S.; Yao, T. Non-equilibrium Li insertion paths in LiMn0.75Fe0.25PO4 observed during the relaxation process. ECS. Electrochem. Lett. 2015, 4, A37-40.
5. Norberg, N. S.; Kostecki, R. The degradation mechanism of a composite LiMnPO4 cathode. J. Electrochem. Soc. 2012, 159, A1431-4.
6. Nedoseykina, T.; Kim, M. G.; Park, S. A.; et al. In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochim. Acta. 2010, 55, 8876-82.
7. Delacourt, C.; Laffont, L.; Bouchet, R.; et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005, 152, A913.
8. Wi, S.; Park, J.; Lee, S.; et al. Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano. Energy. 2017, 39, 371-9.
9. Luo, C.; Jiang, Y.; Zhang, X.; Ouyang, C.; Niu, X.; Wang, L. Misfit strains inducing voltage decay in LiMnyFe1-yPO4/C. J. Energy. Chem. 2022, 68, 206-12.
10. Zhang, K.; Li, Z. X.; Li, X. Y.; et al. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare. Met. 2023, 42, 740-50.
11. Gardiner, G. R.; Islam, M. S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem. Mater. 2010, 22, 1242-8.
12. Zhang, B.; Xie, X.; Peng, Z.; et al. Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes. J. Power. Sources. 2022, 541, 231671.
13. Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022, 6, 984-1007.
14. Chang, X. Y.; Wang, Z. X.; Li, X. H.; Zhang, L.; Guo, H. J.; Peng, W. J. Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater. Res. Bull. 2005, 40, 1513-20.
15. Li, Z.; Ren, X.; Tian, W.; et al. LiMn0.6Fe0.4PO4/CA cathode materials with carbon aerogel as additive synthesized by wet ball-milling combined with spray drying. J. Electrochem. Soc. 2020, 167, 090516.
16. Hou, Y. K.; Pan, G. L.; Sun, Y. Y.; Gao, X. P. LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 16500-10.
17. Chen, W.; Xu, D.; Chen, Y.; et al. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1-xMnxPO4 (M = Li, Na) as a high performance cathode for lithium/sodium-ion batteries. Adv. Mater. Inter. 2020, 7, 2000684.
18. Guo, L.; Ren, L.; Wan, L.; Li, J. Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Appl. Surf. Sci. 2019, 476, 513-20.
19. Damen, L.; De, G. F.; Monaco, S.; Veronesi, F.; Mastragostino, M. Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1-xFexPO4 (x = 0.2, 0.3) materials for lithium-ion batteries. J. Power. Sources. 2012, 218, 250-3.
20. Qiao, Y.; Zhao, H.; Shen, Y.; et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives. EcoMat 2023, 5, e12321.
21. Su, P.; Zhang, H.; Yang, L.; et al. Effects of conductive additives on the percolation networks and rheological properties of LiMn0.7Fe0.3PO4 suspensions for lithium slurry battery. Chem. Eng. J. 2022, 433, 133203.
22. Pan, X. L.; Xu, C. Y.; Zhen, L. Synthesis of LiMnPO4 microspheres assembled by plates, wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm 2012, 14, 6412.
23. Kosova, N. V.; Podgornova, O. A.; Gutakovskii, A. K. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods. J. Alloys. Compd. 2018, 742, 454-65.
24. Kosa, M.; Aurbach, D.; Major, D. T. First-principles evaluation of the inherent stabilities of pure LixMPO4 (M = Mn, Fe, Co,) and mixed binary LixFeyM′1-yPO4 (M' = Mn, Co) olivine phosphates. Mater. Chem. Phys. 2016, 174, 54-8.
25. Jang, D.; Palanisamy, K.; Yoon, J.; Kim, Y.; Yoon, W. S. Crystal and local structure studies of LiFe0.48Mn0.48Mg0.04PO4 cathode material for lithium rechargeable batteries. J. Power. Sources. 2013, 244, 581-5.
26. Kope¢, M.; Yamada, A.; Kobayashi, G.; et al. Structural and magnetic properties of LixMnyFeyPO4 electrode materials for Li-ion batteries. J. Power. Sources. 2009, 189, 1154-63.
27. Chen, G.; Richardson, T. J. Thermal instability of olivine-type LiMnPO4 cathodes. J. Power. Sources. 2010, 195, 1221-4.
28. Hong, J.; Wang, F.; Wang, X.; Graetz, J. LiFexMn1-xPO4: a cathode for lithium-ion batteries. J. Power. Sources. 2011, 196, 3659-63.
29. Dompablo MAY, Amador U, Tarascon J. A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J. Power. Sources. 2007, 174, 1251-7.
30. Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005, 17, 5085-92.
31. Fisher, C. A. J.; Hart, P. V. M.; Islam, M. S. Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 2008, 20, 5907-15.
32. Jensen, K. M. Ø.; Christensen, M.; Gunnlaugsson, H. P.; et al. Defects in hydrothermally synthesized LiFePO4 and LiFe1-xMnxPO4 cathode materials. Chem. Mater. 2013, 25, 2282-90.
33. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188-94.
34. Muraliganth, T.; Manthiram, A. Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes. J. Phys. Chem. C. 2010, 114, 15530-40.
35. Wi, S.; Park, J.; Lee, S.; et al. Synchrotron-based X-ray absorption spectroscopy for the electronic structure of LixMn0.8Fe0.2PO4 mesocrystal in Li+ batteries. Nano. Energy. 2017, 31, 495-503.
36. Yu, H.; Cao, Y.; Chen, L.; et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nat. Commun. 2021, 12, 4564.
37. Delmas, C.; Maccario, M.; Croguennec, L.; Le, C. F.; Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 2008, 7, 665-71.
38. Ravnsbæk, D. B.; Xiang, K.; Xing, W.; et al. Engineering the transformation strain in LiMnyFe1-yPO4 olivines for ultrahigh rate battery cathodes. Nano. Lett. 2016, 16, 2375-80.
39. Yang, G.; Ni, H.; Liu, H.; et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M = Mg, V, Fe, Co, Gd). J. Power. Sources. 2011, 196, 4747-55.
40. Xiang, K.; Xing, W.; Ravnsbæk, D. B.; et al. Accommodating high transformation strains in battery electrodes via the formation of nanoscale intermediate phases: operando investigation of olivine NaFePO4. Nano. Lett. 2017, 17, 1696-702.
41. Drezen, T.; Kwon, N. H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of particle size on LiMnPO4 cathodes. J. Power. Sources. 2007, 174, 949-53.
42. Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 2004, 16, 93-9.
43. Dong, Y.; Zhao, Y.; Duan, H.; Liang, Z. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings. Electrochim. Acta. 2014, 132, 244-50.
44. Minnetti, L.; Marangon, V.; Hassoun, J. Synthesis and characterization of a LiFe0.6Mn0.4PO4 olivine cathode for application in a new lithium polymer battery. Adv. Sustain. Syst. 2022, 6, 2100464.
45. Lou, X.; Zhong, J.; Cheng, D.; et al. Solvent-free quasi-solid polymer electrolyte with a high dielectric constant for stable lithium metal anodes. Chem. Eng. J. 2023, 468, 143681.
46. Li, S.; Tang, R.; Hu, C.; Niu, X.; Wang, L. Potassium 2-thienyl tri-fluoroborate as a functional electrolyte additive enables stable interfaces for Li/LiFe0.3Mn0.7PO4 batteries. J. Colloid. Interface. Sci. 2023, 646, 150-8.
47. Ju, J.; Wang, Y.; Chen, B.; et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 13588-97.
48. Liow, C. H.; Kang, H.; Kim, S.; et al. Machine learning assisted synthesis of lithium-ion batteries cathode materials. Nano. Energy. 2022, 98, 107214.
49. Li, Y.; Zhou, T.; Xiong, S.; Huang, D. Boosting manganese-based phosphate cathode performance via Fe or Ni solid solution for lithium-ion battery: a first-principles and experiment study. Energy. Fuels. 2023, 37, 19304-19.
50. Li, Y.; Xing, B.; Wang, Z.; et al. Constructing a hierarchical LiMn0.8Fe0.2PO4/C cathode via comodification of Li3PO4 and graphite for high-performance lithium-ion batteries. ACS. Appl. Energy. Mater. 2022, 5, 10983-93.
51. Li, J.; Wang, Y.; Wu, J.; Zhao, H.; Liu, H. CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries. J. Alloys. Compd. 2018, 731, 864-72.
52. Zhao, Z.; Sun, M.; Chen, W.; et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 2019, 29, 1809196.
53. Zhang, G.; Zang, R.; Mo, M.; et al. 3D anchoring structured for LiFe0.5Mn0.5PO4@cornstalk-C cathode materials. Chin. Chem. Lett. 2023, 34, 108164.
54. Zeng, T.; Liu, D. H.; Fan, C.; et al. LiMn0.8Fe0.2PO4@C cathode prepared via a novel hydrated MnHPO4 intermediate for high performance lithium-ion batteries. Inorg. Chem. Front. 2023, 10, 1164-75.
55. Yang, Y.; Chen, X.; Gu, Y.; et al. The effect of using nano-bubble water as a solvent on the properties of lithium iron manganese phosphate prepared by solvothermal method. Mater. Lett. 2021, 299, 130053.
56. Wen, F.; Lv, T.; Gao, P.; et al. Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for lithium ion batteries. Electrochim. Acta. 2018, 276, 134-41.
57. Peng, Z.; Zhang, B.; Hu, G.; et al. Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochim. Acta. 2021, 387, 138456.
58. Xiong, J.; Wang, Y.; Wang, Y.; Li, Z.; Zhang, J. Three-dimensional (3D) LiMn0.8Fe0.2PO4 nanoflowers assembled from interconnected nanoflakes as cathode materials for lithium ion batteries. Ceram. Int. 2017, 43, 3190-5.
59. Yu, M.; Li, J.; Ning, X. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochim. Acta. 2021, 368, 137597.
60. Leng, F.; Yan, X.; Jing, L.; et al. Electrospun polycrystalline LiFe0.2Mn0.8PO4/carbon composite fibers for lithium-ion battery. Colloid. Surface. A. 2016, 495, 54-61.
61. Xiong, J.; Wang, Y.; Wang, Y.; Zhang, J. PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C nanorods as cathode material for lithium ion batteries. Ceram. Int. 2016, 42, 9018-24.
62. Zoller, F.; Böhm, D.; Luxa, J.; et al. Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries. Mater. Today. Energy. 2020, 16, 100416.
63. Zhang, L. S.; Gao, X. L.; Liu, X. H.; et al. CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare. Met. 2022, 41, 1477-89.
64. Zhang, H.; Wei, Z.; Jiang, J.; et al. Three dimensional nano-LiMn0.6Fe0.4PO4@C/CNT as cathode materials for high-rate lithium-ion batteries. J. Energy. Chem. 2018, 27, 544-51.
65. Yu, X.; Li, Q.; Liu, Q.; et al. Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4-yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries. J. Mater. Res. 2020, 35, 2-11.
66. Ouyang, C. Y.; Shi, S. Q.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J. Phys. Condens. Matter. 2004, 16, 2265-72.
67. Liu, S.; Fang, H.; Dai, E.; et al. Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim. Acta. 2014, 116, 97-102.
68. Huang, Q. Y.; Wu, Z.; Su, J.; Long, Y. F.; Lv, X. Y.; Wen, Y. X. Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram. Int. 2016, 42, 11348-54.
69. Ding, D.; Maeyoshi, Y.; Kubota, M.; Wakasugi, J.; Kanamura, K.; Abe, H. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries. J. Power. Sources. 2020, 449, 227553.
70. Zhu, Y.; Casselman, M. D.; Li, Y.; Wei, A.; Abraham, D. P. Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries. J. Power. Sources. 2014, 246, 184-91.
71. Zhang, Y.; Ma, Q.; Wang, S.; Liu, X.; Li, L. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS. Nano. 2018, 12, 4824-34.
72. Zhang, J.; Zhao, N.; Zhang, M.; et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano. Energy. 2016, 28, 447-54.
73. Lv, Z.; Li, M.; Lin, J.; et al. First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect. J. Solid. State. Electrochem. 2024, 28, 577-87.
74. Hu, H.; Li, H.; Lei, Y.; et al. Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries. J. Energy. Stor. 2023, 73, 109006.
75. Liu, W.; Liu, X.; Hao, R.; et al. Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C. J. Electroanal. . Chem. 2023, 929, 117117.
76. Yi, H.; Hu, C.; Fang, H.; et al. Optimized electrochemical performance of LiMn0.9Fe0.1-xMgxPO4/C for lithium ion batteries. Electrochim. Acta. 2011, 56, 4052-7.
77. Li, R.; Fan, C.; Zhang, W.; Tan, M.; Zeng, T.; Han, S. Structure and performance of Na+ and Fe2+ co-doped Li1-xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries. Ceram. Int. 2019, 45, 10501-10.
78. Duan, J.; Hu, G.; Cao, Y.; Du, K.; Peng, Z. Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics 2016, 22, 609-19.
79. Kim, D.; Lee, S.; Choi, W. Boosting both electronic and ionic conductivities via incorporation of molybdenum for LiFe0.5Mn0.5PO4 cathode in lithium-ion batteries. J. Alloys. Compd. 2024, 989, 174396.
80. Yi, H.; Hu, C.; He, X.; Xu, H. Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries. Ionics 2015, 21, 667-71.
81. Du, K.; Zhang, L. H.; Cao, Y. B.; Guo, H. W.; Peng, Z. D.; Hu, G. R. Synthesis of LiFe0.4Mn0.6-xNixPO4/C by co-precipitation method and its electrochemical performances. J. Appl. Electrochem. 2011, 41, 1349-55.
82. Fang, H.; Dai, E.; Yang, B.; Yao, Y.; Ma, W. LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries. J. Power. Sources. 2012, 204, 193-6.
83. Thaheem, I.; Kim, K. J.; Lee, J. J.; Joh, D. W.; Jeong, I.; Lee, K. T. High performance Mn1.3Co1.3Cu0.4O4 spinel based composite cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A. 2019, 7, 19696-703.
84. Podgornova, O. A.; Volfkovich, Y. M.; Sosenkin, V. E.; Kosova, N. V. Increasing the efficiency of carbon coating on olivine-structured cathodes by choosing a carbon precursor. J. Electroanal. Chem. 2022, 907, 116059.
85. Li, Y.; Fan, Z.; Peng, Z.; et al. Metal-organic framework-derived LiFePO4/C composites for lithium storage: in situ construction, effective exploitation, and targeted restoration. EcoMat 2023, 5, e12415.
86. Cui, X.; Tuo, K.; Dong, H.; et al. Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material. J. Alloys. Compd. 2021, 885, 160946.
87. Fan, R. Z.; Fan, C. L.; Hu, Z.; et al. Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries. J. Alloys. Compd. 2021, 876, 160090.
88. Tuo, K.; Mao, L.; Ding, H.; et al. Boron and phosphorus dual-doped carbon coating improves electrochemical performances of LiFe0.8Mn0.2PO4 cathode materials. ACS. Appl. Energy. Mater. 2021, 4, 8003-15.
89. Zhao, Q.; Li, X.; Tang, F.; et al. Compatibility between lithium bis(oxalate)borate-based electrolytes and a LiFe0.6Mn0.4PO4/C cathode for lithium-ion batteries. Energy. Technol. 2017, 5, 406-13.
90. Yu, H.; Han, J. S.; Hwang, G. C.; Cho, J. S.; Kang, D. W.; Kim, J. K. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries. Electrochim. Acta. 2021, 365, 137349.
91. Ye, F.; Wang, L.; He, X.; et al. Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: reaction mechanism and electrochemical properties. J. Power. Sources. 2014, 253, 143-9.
92. Yang, H.; Fu, C.; Sun, Y.; Wang, L.; Liu, T. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon 2020, 158, 102-9.
93. Xie, X.; Zhang, B.; Hu, G.; et al. A new route for green synthesis of LiFe0.25Mn0.75PO4/C@rGO material for lithium ion batteries. J. Alloys. Compd. 2021, 853, 157106.
94. Xiao, P.; Cai, Y.; Chen, X.; Sheng, Z.; Chang, C. Improved electrochemical performance of LiFe0.4Mn0.6PO4/C with Cr3+ doping. RSC. Adv. 2017, 7, 31558-66.
95. Wang, H.; He, J.; Liu, J.; et al. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2002578.
96. Chang, H.; Li, Y.; Fang, Z. K.; Qu, J. P.; Zhu, Y. R.; Yi, T. F. Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites for high-performance Li-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 33102-11.
105. Yang, C. C.; Hung, Y. W.; Lue, S. J. Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process. J. Power. Sources. 2016, 325, 565-74.
106. Starke, B.; Seidlmayer, S.; Schulz, M.; et al. Gas evolution and capacity fading in LiFexMn1-xPO4/graphite cells studied by neutron imaging and neutron induced prompt gamma activation analysis. J. Electrochem. Soc. 2017, 164, A3943-8.
107. Jalkanen, K.; Vuorilehto, K. Entropy change characteristics of LiMn0.67Fe0.33PO4 and Li4Ti5O12 electrode materials. J. Power. Sources. 2015, 273, 351-9.
108. Liu, Y.; Sun, Y.; Wen, X.; Huang, T.; Yu, A. Li2ZrO3 coated LiFe0.4Mn0.6PO4/C with enhanced cycling performance at elevated temperature for lithium-ion batteries. J. Power. Sources. 2024, 613, 234938.
109. Leslie, K.; Harlow, J.; Rathore, D.; Tuul, K.; Metzger, M. Correlating Mn dissolution and capacity fade in LiMn0.8Fe0.2PO4/graphite cells during cycling and storage at elevated temperature. J. Electrochem. Soc. 2024, 171, 040520.
110. Oh, S. M.; Myung, S. T.; Park, J. B.; Scrosati, B.; Amine, K.; Sun, Y. K. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2012, 51, 1853-6.
111. Oh, S. M.; Myung, S. T.; Choi, Y. S.; Oh, K. H.; Sun, Y. K. Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. J. Mater. Chem. 2011, 21, 19368-74.
112. Rui, X. H.; Jin, Y.; Feng, X. Y.; Zhang, L. C.; Chen, C. H. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J. Power. Sources. 2011, 196, 2109-14.
113. Wang, F.; Chen, J.; Tan, Z.; et al. Low-temperature electrochemical performances of LiFePO4 cathode materials for lithium ion batteries. J. Taiwan. Inst. Chem. Eng. 2014, 45, 1321-30.
114. Wu, Z.; Zhu, H.; Bi, H.; He, P.; Gao, S. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Waste. Manag. Res. 2021, 39, 607-19.
115. Boesenberg, U.; Henriksen, C.; Rasmussen, K. L.; Chiang, Y. M.; Garrevoet, J.; Ravnsbæk, D. B. State of LiFePO4 Li-ion battery electrodes after 6533 deep-discharge cycles characterized by combined micro-XRF and micro-XRD. ACS. Appl. Energy. Mater. 2022, 5, 4358-68.
116. Yang, C.; Zhang, J. L.; Jing, Q. K.; Liu, Y. B.; Chen, Y. Q.; Wang, C. Y. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process. Int. J. Miner. Metall. Mater. 2021, 28, 1478-87.
117. Zeng, S.; Xu, Q.; Jin, H.; et al. A green strategy towards fabricating FePO4-graphene oxide for high-performance cathode of lithium/sodium-ion batteries recovered from spent batteries. J. Electroanal. Chem. 2022, 913, 116287.
118. Hu, Z.; Liu, J.; Gan, T.; Lu, D.; Wang, Y.; Zheng, X. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries. Sep. Purif. Technol. 2022, 297, 121486.
119. Zhang, B.; Qu, X.; Chen, X.; et al. A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO4 batteries. J. Hazard. Mater. 2022, 424, 127586.
120. Jiang, Y.; Chen, X.; Yan, S.; Ou, Y.; Zhou, T. Mechanochemistry-induced recycling of spent lithium-ion batteries for synergistic treatment of mixed cathode powders. Green. Chem. 2022, 24, 5987-97.
121. Peng, D.; Wang, X.; Wang, S.; et al. Efficient regeneration of retired LiFePO4 cathode by combining spontaneous and electrically driven processes. Green. Chem. 2022, 24, 4544-56.
122. Qiu, X.; Zhang, B.; Xu, Y.; et al. Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries. Green. Chem. 2022, 24, 2506-15.
123. Zhou, S.; Du, J.; Xiong, X.; et al. Direct recovery of scrapped LiFePO4 by a green and low-cost electrochemical re-lithiation method. Green. Chem. 2022, 24, 6278-86.
124. Gou, Y.; Qi, C.; Li, R.; et al. Direct regeneration of high-value LiFePO4 cathode materials with nitrogen doped carbon coating. Electrochim. Acta. 2024, 488, 144180.
125. Sun, J.; Jiang, Z.; Jia, P.; et al. A sustainable revival process for defective LiFePO4 cathodes through the synergy of defect-targeted healing and in-situ construction of 3D-interconnected porous carbon networks. Waste. Manag. 2023, 158, 125-35.
126. Li, X.; Wang, M.; Zhou, Q.; et al. The prilling and cocoating collaborative strategy to construct high performance of regeneration LiFePO4 materials. ACS. Mater. Lett. 2024, 6, 640-7.
127. Jia, K.; Ma, J.; Wang, J.; et al. Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe (Adv. Mater. 5/2023). Adv. Mater. 2023, 35, 2370034.
128. Ji, G.; Wang, J.; Liang, Z.; et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 2023, 14, 584.
129. Wang, W.; Wang, R.; Zhan, R.; et al. Probing hybrid LiFePO4/FePO4 phases in a single olive LiFePO4 particle and their recovering from degraded electric vehicle batteries. Nano. Lett. 2023, 23, 7485-92.
130. Chen, B.; Liu, M.; Cao, S.; et al. Direct regeneration and performance of spent LiFePO4 via a green efficient hydrothermal technique. J. Alloys. Compd. 2022, 924, 166487.
131. Wang, Z.; Wu, D.; Wang, X.; Huang, Y.; Wu, X. Green phosphate route of regeneration of LiFePO4 composite materials from spent lithium-ion batteries. Ind. Eng. Chem. Res. 2023, 62, 1181-94.
132. Du, M.; Guo, J. Z.; Zheng, S. H.; et al. Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: extracting Li from brine. Chin. Chem. Lett. 2023, 34, 107706.
133. Yue, X. H.; Zhang, F. S. Recycling spent LiFePO4 battery for fabricating visible-light photocatalyst with adsorption-photocatalytic synergistic performance and simultaneous recovery of lithium and phosphorus. Chem. Eng. J. 2022, 450, 138388.
134. Yang, L.; Feng, Y.; Wang, C.; et al. Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching. Chem. Eng. J. 2022, 431, 133232.
135. Shan, M.; Dang, C.; Meng, K.; et al. Recycling of LiFePO4 cathode materials: from laboratory scale to industrial production. Mater. Today. 2024, 73, 130-50.
136. Zhang, X.; Xie, W.; Zhou, X.; et al. Study on metal recovery process and kinetics of oxidative leaching from spent LiFePO4 Li-batteries. Chin. J. Chem. Eng. 2024, 68, 94-102.
137. Durmus, Y. E.; Zhang, H.; Baakes, F.; et al. Side by side battery technologies with lithium-ion based batteries. Adv. Energy. Mater. 2020, 10, 2000089.
138. Li, Y.; Lv, W.; Huang, H.; et al. Recycling of spent lithium-ion batteries in view of green chemistry. Green. Chem. 2021, 23, 6139-71.
139. Yue, X. H.; Zhang, C. C.; Zhang, W. B.; Wang, Y.; Zhang, F. S. Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium. Chem. Eng. J. 2021, 426, 131311.
140. Jin, H.; Zhang, J.; Wang, D.; Jing, Q.; Chen, Y.; Wang, C. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature. Green. Chem. 2022, 24, 152-62.
141. Deng, Y.; Yang, C.; Zou, K.; Qin, X.; Zhao, Z.; Chen, G. Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5 < y < 1.0) cathode materials for high energy density lithium ion batteries. Adv. Energy. Mater. 2017, 7, 1601958.
142. Ding, J.; Su, Z.; Tian, H. Synthesis of high rate performance LiFe1-xMnxPO4/C composites for lithium-ion batteries. Ceram. Int. 2016, 42, 12435-40.
143. Nwachukwu, I. M.; Nwanya, A. C.; Ekwealor, A. B. C.; Ezema, F. I. Recent progress in Mn and Fe-rich cathode materials used in Li-ion batteries. J. Energy. Stor. 2022, 54, 105248.
144. He, L.; Li, H.; Ge, X.; et al. Iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: development, challenges, and prospects. Adv. Mater. Inter. 2022, 9, 2200515.
145. Meng, J.; Xu, L.; Ma, Q.; et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013.
146. Zhou, J.; Xing, C.; Huang, J.; et al. Direct upcycling of leached FePO4 from spent lithium-ion batteries toward gradient-doped LiMnxFe1-xPO4 cathode material. Adv. Energy. Mater. 2024, 14, 2302761.
147. Ji, G.; Tang, D.; Wang, J.; et al. Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 2024, 15, 4086.
148. Xu, C.; Hu, X.; Yang, Y.; et al. Integrated process of CO2 sequestration and recycling spent LiFePO4 batteries. Energy. Stor. Mater. 2023, 60, 102819.
149. Luo, K.; Zhou, M.; Liu, T.; et al. A high-performance zinc-air battery cathode catalyst from recycling of spent lithium iron phosphate batteries. Small. Struct. 2023, 4, 2300107.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.