1. Chang, J.; Wang, G.; Li, C.; et al. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587-602.
2. Fuku, X.; Modibedi, M. Performance of BiCu2O modified Pd/C as an anode electrocatalyst for direct ethanol fuel cell system. Catal. Today. 2024, 425, 114305.
3. Fajardo, S.; Ocón, P.; Rodríguez, J.; Pastor, E. Co supported on N and S dual-doped reduced graphene oxide as highly active oxygen-reduction catalyst for direct ethanol fuel cells. Chem. Eng. J. 2023, 461, 142053.
4. Ao, W.; Ren, H.; Cheng, C.; et al. Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation. Angew. Chem. Int. Ed. 2023, 62, e202305158.
5. Xiao, L.; Li, G.; Yang, Z.; et al. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.
6. Yoon, Y. S.; Basumatary, P.; Kilic, M. E.; et al. Novel GaPtMnP alloy based anodic electrocatalyst with excellent catalytic features for direct ethanol fuel cells. Adv. Funct. Mater. 2022, 32, 2111272.
7. Wang, Z.; Tang, Y.; Liu, S.; et al. Energy transfer-mediated multiphoton synergistic excitation for selective C(sp3)-H functionalization with coordination polymer. Nat. Commun. 2024, 15, 8813.
8. Zhang, Y.; Liu, X.; Liu, T.; et al. Rhombohedral Pd-Sb nanoplates with Pd-terminated surface: an efficient bifunctional fuel-cell catalyst. Adv. Mater. 2022, 34, e2202333.
9. Wang, H.; Abruña, H. D. Adsorbed enolate as the precursor for the C-C bond splitting during ethanol electrooxidation on Pt. J. Am. Chem. Soc. 2023, 145, 6330-8.
10. Sun, B.; Zhong, W.; Ai, X.; Zhang, C.; Li, F.; Chen, Y. Engineering low-coordination atoms on RhPt bimetallene for 12-electron ethanol electrooxidation. Energy. Environ. Sci. 2024, 17, 2219-27.
11. Kim, K. H.; Hobold, G. M.; Steinberg, K. J.; Gallant, B. M. Confinement effects of hollow structured Pt-Rh electrocatalysts toward complete ethanol electrooxidation. ACS. Nano. 2023, 17, 14176-88.
12. Han, C.; Lyu, Y.; Wang, S.; et al. Noncovalent interactions on the electrocatalytic oxidation of ethanol on a Pt/C electrocatalyst. Carbon. Energy. 2023, 5, e339.
13. Liang, C.; Zhao, R.; Chen, T.; et al. Recent approaches for cleaving the C-C bond during ethanol electro-oxidation reaction. Adv. Sci. 2024, 11, e2308958.
14. Peng, K.; Liu, L.; Bhuvanendran, N.; Lee, S. Y.; Xu, Q.; Su, H. Efficient one-dimensional Pt-based nanostructures for methanol oxidation reaction: an overview. Int. J. Hydrogen. Energy. 2023, 48, 29497-517.
15. Yu, R.; Shao, R.; Ning, F.; et al. Electronic and geometric effects endow PtRh jagged nanowires with superior ethanol oxidation catalysis. Small 2024, 20, e2305817.
16. Wang, Q.; Zhu, R.; Deng, P.; et al. Rhodium decorated stable platinum nickel nanowires for effective ethanol oxidation reaction. Sci. China. Mater. 2023, 66, 679-85.
17. Gao, L.; Sun, T.; Chen, X.; et al. Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell. Nat. Commun. 2024, 15, 508.
18. Zhao, X.; Takao, S.; Yoshida, Y.; et al. Roles of structural defects in polycrystalline platinum nanowires for enhanced oxygen reduction activity. Appl. Catal. B. Environ. 2023, 324, 122268.
19. Zhou, Z.; Zhang, H.; Feng, X.; Ma, Z.; Ma, Z.; Xue, Y. Progress of Pt and iron-group transition metal alloy catalysts with high ORR activity for PEMFCs. J. Electroanalytical. Chem. 2024, 959, 118165.
20. Liu, X.; Zhao, Z.; Liang, J.; et al. Inducing covalent atomic interaction in intermetallic Pt alloy nanocatalysts for high-performance fuel cells. Angew. Chem. Int. Ed. 2023, 62, e202302134.
21. Xia, T.; Zhao, K.; Zhu, Y.; et al. Mixed-dimensional Pt-Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells. Adv. Mater. 2023, 35, e2206508.
22. Nie, M.; Xu, Z.; Luo, L.; Wang, Y.; Gan, W.; Yuan, Q. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction. J. Colloid. Interface. Sci. 2023, 643, 26-37.
23. Liu, Y.; Sheng, S.; Wu, M.; et al. Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation. ACS. Appl. Mater. Interfaces. 2023, 15, 3934-40.
24. Carvalho, L. L.; Tanaka, A. A.; Colmati, F. Palladium-platinum electrocatalysts for the ethanol oxidation reaction: comparison of electrochemical activities in acid and alkaline media. J. Solid. State. Electrochem. 2018, 22, 1471-81.
25. Qian, K.; Hao, F.; Wei, S.; et al. Synthesis of well-dispersed Pt-Pd nanoparticles stabilized by silsesquioxanes with enhanced catalytic activity for formic acid electrooxidation. J. Solid. State. Electrochem. 2017, 21, 297-304.
26. Luo, W.; Zhou, H.; Fu, C.; Huang, Z.; Gao, N.; Kuang, Y. Preparation and characterization of porous sponge-like Pd@Pt nanotubes with high catalytic activity for ethanol oxidation. Mater. Lett. 2016, 173, 43-6.
27. Zhang, Y.; Shu, G.; Shang, Z.; et al. Electronic and coordination effect of PtPd nanoflower alloys for the methanol electrooxidation reaction. ACS. Sustain. Chem. Eng. 2023, 11, 8958-67.
28. Li, B.; Zhang, H.; Kaelin, J.; et al. Carbon-supported and shape-controlled PtPd nanocrystal synthesis in flowing deep eutectic solvents for the methanol oxidation reaction. ACS. Appl. Nano. Mater. 2023, 6, 3184-90.
29. Ding, K.; Wang, Y.; Yang, H.; et al. Electrocatalytic activity of multi-walled carbon nanotubes-supported PtxPdy catalysts prepared by a pyrolysis process toward ethanol oxidation reaction. Electrochim. Acta. 2013, 100, 147-56.
30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.
32. Lee, Y.; Ko, A.; Kim, D.; Han, S.; Park, K. Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC. Adv. 2012, 2, 1119-25.
33. Bai, Z.; Luo, J.; Ming, D.; Wang, C.; Xu, H.; Ye, W. High active and durable N-doped carbon spheres-supported flowerlike PtPd nanoparticles for electrochemical oxidation of liquid alcohols. Electrochim. Acta. 2020, 356, 136794.
34. Ying, J.; Xiao, Y.; Chen, J.; et al. Fractal design of hierarchical PtPd with enhanced exposed surface atoms for highly catalytic activity and stability. Nano. Lett. 2023, 23, 7371-8.
35. Cheng, Y.; Shen, P. K.; Saunders, M.; Jiang, S. P. Core-shell structured PtRuCox nanoparticles on carbon nanotubes as highly active and durable electrocatalysts for direct methanol fuel cells. Electrochim. Acta. 2015, 177, 217-26.
36. Shao, C.; Cui, Y.; Zhang, L.; et al. Boosting propane purification on Pt/ZrOSO4 nanoflowers: insight into the roles of different sulfate species in synergy with Pt. Sep. Purif. Technol. 2023, 304, 122367.
37. Ho, V. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 11716-24.
38. Ando, F.; Gunji, T.; Tanabe, T.; et al. Enhancement of the oxygen reduction reaction activity of pt by tuning Its d-band center via transition metal oxide support interactions. ACS. Catal. 2021, 11, 9317-32.
39. Li, J.; Chen, Y.; Bai, R.; et al. Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination. Chem. Eng. J. 2022, 435, 134932.
40. Chen, H.; Shuang, H.; Lin, W.; et al. Tuning interfacial electronic properties of palladium oxide on vacancy-abundant carbon nitride for low-temperature dehydrogenation. ACS. Catal. 2021, 11, 6193-9.
41. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-5.
42. Xu, X.; Zhang, X.; Sun, H.; et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 2014, 53, 12522-7.
43. Zhao, Z. L.; Wang, Q.; Du, H.; Liang, T.; An, H. M.; Li, C. M. Sub-15 nm Pd@PtCu concave octahedron with enriched atomic steps as enhanced oxygen reduction electrocatalyst. J. Power. Sources. 2019, 434, 226742.
44. Hu, S.; Li, X.; Ali, A.; Zhang, X.; Kang, S. P. Large-scale synthesis of porous Pt nanospheres/three-dimensional graphene hybrid materials as a highly active and stable electrocatalyst for oxygen reduction reaction. ChemistrySelect 2021, 6, 2080-4.
45. Wang, M.; Liu, X.; Wu, X. Realizing efficient electrochemical overall water electrolysis through hierarchical CoP@NiCo-LDH nanohybrids. Nano. Energy. 2023, 114, 108681.
46. Yang, Y.; Wang, Y.; He, H. L.; et al. Covalently connected Nb4N5-xOx-MoS2 heterocatalysts with desired electron density to boost hydrogen evolution. ACS. Nano. 2020, 14, 4925-37.
47. He, D.; Song, X.; Li, W.; et al. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance. Angew. Chem. Int. Ed. 2020, 59, 6929-35.
48. Luo, S.; Zhang, L.; Liao, Y.; et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, e2008508.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.