REFERENCES
1. Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral vector-based gene therapy. Int J Mol Sci 2023;24:7736.
3. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther 2020;29:464-88.
4. Lek A, Atas E, Hesterlee SE, Byrne BJ, Bönnemann CG. Meeting report: 2022 muscular dystrophy association summit on 'safety and challenges in gene transfer therapy’. J Neuromuscul Dis 2023;10:327-36.
5. Lek A, Atlas E, Lin B, Hesterlee SE, et al. Meeting report: 2023 muscular dystrophy association summit on ‘safety and challenges in gene therapy of neuromuscular diseases’. J Neuromuscul Dis 2024;11:1139-60.
6. Servais L, Horton R, Saade D, Bönnemann C, Muntoni F. 261st ENMC workshop study group. 261st ENMC international workshop: management of safety issues arising following AAV gene therapy. Neuromuscul Disord 2023;33:884-96.
7. Food and Drug Administration (FDA). Cellular, tissue, and gene therapies advisory committee (CTGTAC) meeting. Available from: https://www.federalregister.gov/documents/2021/07/26/2021-15783/cellular-tissue-and-gene-therapies-advisory-committee-notice-of-meeting-establishment-of-a-public [Last accessed on 14 Oct 2024].
8. Horton RH, Saade D, Markati T, et al. A systematic review of adeno-associated virus gene therapies in neurology: the need for consistent safety monitoring of a promising treatment. J Neurol Neurosurg Psychiatry 2022;93:1276-88.
9. Chand DH, Zaidman C, Arya K, et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediat ;231:265-8.
10. Askitopoulou H, Vgontzas AN. The relevance of the Hippocratic Oath to the ethical and moral values of contemporary medicine. Part I: the hippocratic oath from antiquity to modern times. Eur Spine J 2018;27:1481-90.
11. Askitopoulou H, Vgontzas AN. The relevance of the hippocratic oath to the ethical and moral values of contemporary medicine. Part II: interpretation of the hippocratic oath-today's perspective. Eur Spine J 2018;27:1491-500.
12. Smith CM. Origin and uses of primum non nocere - above all, do no harm! J Clin Pharmacol 2005;45:371-7.
13. Sioutis S, Reppas L, Bekos A, et al. The hippocratic oath: analysis and contemporary meaning. Orthopedics 2021;44:264-72.
15. Kane HL, Halpern MT, Squiers LB, Treiman KA, McCormack LA. Implementing and evaluating shared decision making in oncology practice. CA Cancer J Clin 2014;64:377-88.
16. Zhang M, He X, Wu J, Xie F. Differences between physician and patient preferences for cancer treatments: a systematic review. BMC Cancer 2023;23:1126.
17. Schuster ALR, Crossnohere NL, Fischer R, Furlong P, Bridges JFP. Unmet therapeutic needs of non-ambulatory patients with Duchenne muscular dystrophy: a mixed-method analysis. Ther Innov Regul Sci 2022;56:572-86.
18. Golli T, Juříková L, Sejersen T, Dixon C. The role of ataluren in the treatment of ambulatory and non-ambulatory children with nonsense mutation Duchenne muscular dystrophy - a consensus derived using a modified Delphi methodology in Eastern Europe, Greece, Israel and Sweden. BMC Neurol 2024;24:73.
19. Stedman HH, Byrne BJ. Signs of progress in gene therapy for muscular dystrophy also warrant caution. Mol Ther 2012;20:249-51.
20. Nichols TC, Whitford MH, Arruda VR, et al. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. Hum Gene Ther Clin Dev 2015;26:5-14.
21. Byrne BJ, Fuller DD, Smith BK, et al. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. Ann Transl Med 2019;7:290.
22. Birch SM, Lawlor MW, Conlon TJ, et al. Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy. Sci Transl Med 2023;15:eabo1815.
23. Yue Y, Pan X, Hakim CH, et al. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 2015;15:5880-90.
24. Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 2017;8:16105.
25. Mack DL, Poulard K, Goddard MA, et al. Systemic AAV8-Mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther 2017;25:839-54.
26. Shieh PB, Kuntz NL, Dowling JJ, et al. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial. Lancet Neurol 2023;22:1125-39.
27. Beggs AH, Böhm J, Snead E, et al. MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers. Natl Acad Sci U S A 2010;107:14697-702.
28. Lawlor MW, Beggs AH, Buj-Bello A, et al. Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons. J Neuropathol Exp Neurol 2016;75:102-10.
29. Lawlor MW, Schoser B, Margeta M, et al. Effects of gene replacement therapy with resamirigene bilparvovec (AT132) on skeletal muscle pathology in X-linked myotubular myopathy: results from a substudy of the ASPIRO open-label clinical trial. EBioMedicine 2024;99:104894.
30. Boehler JF, Brown KJ, Beatka M, et al. Clinical potential of microdystrophin as a surrogate endpoint. Neuromuscul Disord 2023;33:40-9.
31. Bönnemann CG, Belluscio BA, Braun S, Morris C, Singh T, Muntoni F. Dystrophin immunity after gene therapy for Duchenne's muscular dystrophy. N Engl J Med 2023;388:2294-6.
32. Zaiss AK, Cotter MJ, White LR, et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 2008;82:2727-40.
33. Salabarria SM, Corti M, Coleman KE, et al. Thrombotic microangiopathy following systemic AAV administration is dependent on anti-capsid antibodies. J Clin Invest 202;134:e173510.
34. Chowdary P, Shapiro S, Makris M, et al. Phase 1-2 trial of AAVS3 gene therapy in patients with hemophilia B. N Engl J Med 2022;387:237-47.
35. Sobh M, Lagali PS, Ghiasi M, et al. Safety and efficacy of adeno-associated viral gene therapy in patients with retinal degeneration: a systematic review and meta-analysis. Transl Vis Sci Technol 2023;12:24.
36. High KA. Theodore E. Woodward Award. AAV-mediated gene transfer for hemophilia. Trans Am Clin Climatol Assoc 2003;114:337-51.
37. Nichols TC, Hough C, Agersø H, Ezban M, Lillicrap D. Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost 2016;14:894-905.
38. Nguyen GN, Everett JK, Kafle S, et al. A long-term study of AAV gene therapy in dogs with hemophilia a identifies clonal expansions of transduced liver cells. Nat Biotechnol 2021;39:47-55.
39. Ellinwood NM, Ausseil J, Desmaris N, et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes. Mol Ther 2011;19:251-9.
40. Bradbury AM, Gurda BL, Casal ML, et al. A review of gene therapy in canine and feline models of lysosomal storage disorders. Hum Gene Ther Clin Dev 2015;26:27-37.
41. Hordeaux J, Jeffrey BA, Jian J, et al. Efficacy and safety of a Krabbe disease gene therapy. Hum Gene Ther 2022;33:499-517.
42. Narfström K, Katz ML, Bragadottir R, et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003;44:1663-72.
43. Aguirre GD, Cideciyan AV, Dufour VL, et al. Gene therapy reforms photoreceptor structure and restores vision in NPHP5-associated Leber congenital amaurosis. Mol Ther 2021;29:2456-68.
44. Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Extended functional rescue following AAV gene therapy in a canine model of LRIT3-congenital stationary night blindness. Vision Res 2023;209:108260.
45. Hamilton BA, Wright JF. Challenges posed by immune responses to AAV vectors: addressing root causes. Front Immunol 2021;12:675897.
46. Yang TY, Braun M, Lembke W, et al. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022;26:471-94.
47. Kishimoto TK, Samulski RJ. Addressing high dose AAV toxicity - 'one and done' or 'slower and lower'? Expert Opin Biol Ther 2022;22:1067-71.
48. Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med 2010;363:1429-37.
49. Lehman AJ, Patterson WI, Davidow B, et al.
50. Jacobs AC, Hatfield KP. History of chronic toxicity and animal carcinogenicity studies for pharmaceuticals. Vet Pathol 2013;50:324-33.
51. Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl Sci 2019;5:845-54.
52. Han JJ. FDA Modernization act 2. 0 allows for alternatives to animal testing. Artif Organs 2023;47:449-50.
54. Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: part 2: potential alternatives to the use of animals in preclinical trials. JACC Basic Transl Sci 2020;5:387-97.
55. Gopinath C, Nathar TJ, Ghosh A, Hickstein DD, Nelson EJR. Contemporary animal models for human gene therapy applications. Curr Gene Ther 2015;15:531-40.
56. FDA. Guidance for industry preclinical assessment of investigational cellular and gene therapy products. Available from: https://www.federalregister.gov/documents/2013/11/25/2013-28173/guidance-for-industry-preclinical-assessment-of-investigational-cellular-and-gene-therapy-products [Last accessed on 14 Oct 2024].
57. Bailey AM, Mendicino M, Au P. An FDA perspective on preclinical development of cell-based regenerative medicine products. Nat Biotechnol 2014;32:721-3.
58. Bailey AM, Arcidiacono J, Benton KA, Taraporewala Z, Winitsky S. United States Food and Drug Administration regulation of gene and cell therapies. Adv Exp Med Biol 2015;871:1-29.
59. Brinks V, Jiskoot W, Schellekens H. Immunogenicity of therapeutic proteins: the use of animal models. Pharm Res 2011;28:2379-85.
60. Enriquez J, Mims BMD, Trasti S, Furr KL, Grisham MB. Genomic, microbial and environmental standardization in animal experimentation limiting immunological discovery. BMC Immunol 2020;21:50.
62. Kiani AK, Pheby D, Henehan G, et al. Ethical considerations regarding animal experimentation. J Prev Med Hyg 2022;63:E255-66.
63. Ziegler A, Gonzalez L, Blikslager A. Large animal models: the key to translational discovery in digestive disease research. Cell Mol Gastroenterol Hepatol 2016;2:716-24.
64. Oh JH, Cho JY. Comparative oncology: overcoming human cancer through companion animal studies. Exp Mol Med 2023;55:725-34.
65. Steenbeek FG, Hytönen MK, Leegwater PA, Lohi H. The canine era: the rise of a biomedical model. Anim Genet 2016;47:519-27.
66. Story BD, Miller ME, Bradbury AM, et al. Canine models of inherited musculoskeletal and neurodegenerative diseases. Front Vet Sci 2020;7:80.
67. Kornegay JN, Bogan JR, Bogan DJ, et al. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 2012;23:85-108.
68. Barthélémy I, Hitte C, Tiret L. The dog model in the spotlight: legacy of a trustful cooperation. J Neuromuscul Dis 2019;6:421-51.
69. Doshi BS, Samelson-Jones BJ, Nichols TC, et al. AAV gene therapy in companion dogs with severe hemophilia: real-world long-term data on immunogenicity, efficacy, and quality of life. Mol Ther Methods Clin Dev 2024;32:101205.
70. Gareau A, Sekiguchi T, Warry E, et al. Allogeneic peripheral blood haematopoietic stem cell transplantation for the treatment of dogs with high-grade B-cell lymphoma. Vet Comp Oncol 2022;20:862-70.
71. Shin JH, Yue Y, Smith B, Duan D. Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs. Hum Gene Ther 2012;23:287-94.
72. Calcedo R, Franco J, Qin Q, et al. Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals other than monkeys may confound in vivo gene therapy studies. Hum Gene Ther Methods 2015;26:103-5.
73. Goggs R, Behling-Kelly E. C1 inhibitor in canine intravascular hemolysis (C1INCH): study protocol for a randomized controlled trial. BMC Vet Res 2019;15:475.
74. Szebeni J, Alving CR, Rosivall L, et al. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res 2007;17:107-17.
75. Kornegay JN, Peterson JM, Bogan DJ, et al. NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 2014;4:18.
76. Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 2000;97:13714-9.
77. Harper SQ, Hauser MA, DelloRusso C, et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002;8:253-61.
78. Wang Z, Tapscott SJ, Chamberlain JS, Storb R. Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials. Front Microbiol 2011;2:201.
79. Wang Z, Allen JM, Riddell SR, et al. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 2007;18:18-26.
80. Yuasa K, Yoshimura M, Urasawa N, et al. Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther 2007;14:1249-60.
81. Kornegay JN, Li J, Bogan JR, et al. Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther 2010;18:1501-8.
82. Li J, Qiao C, Bogan J, et al. Efficient long-term bodywide expression of an AAV9-minidystrophin in the muscle and heart of young adult GRMD dogs after intravascular injection without immune suppression. Available from: https://www.cell.com/molecular-therapy-family/molecular-therapy/pdf/S1525-0016(16)36624-2.pdf [Last accessed on 14 Oct 2024].
83. Wang Z, Kuhr CS, Allen JM, et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007;15:1160-6.
84. Koo T, Okada T, Athanasopoulos T, et al. Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J Gene Med 2011;13:497-506.
85. Bowles DE, McPhee SW, Li C, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 2012;20:443-55.
86. Ketonis C, Ilyas AM, Liss F. Pain management strategies in hand surgery. Orthop Clin North Am 2015;46:399-408.
87. Hagstrom JE, Hegge J, Zhang G, et al. A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 2004;10:386-98.
88. Arruda VR, Stedman HH, Haurigot V, et al. Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood 2010;115:4678-88.
89. Ohshima S, Shin JH, Yuasa K, et al. Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle. Mol Ther 2009;17:73-80.
90. Fan Z, Kocis K, Valley R, Howard JF Jr, et al. High-pressure transvenous perfusion of the upper extremity in human muscular dystrophy: a safety study with 0. 9% saline. Hum Gene Ther 2015;26:614-21.
91. Wang B, Li J, Fu FH, Xiao X. Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin- deficient mice. J Orthop Res 2009;27:421-26.
92. Gregorevic P, Blankinship MJ, Allen JM, Chamberlain JS. Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol Ther 2008;16:657-64.
93. Chen Y, Zheng Y, Kang Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 2015;24:3764-74.
94. Lim KRQ, Nguyen Q, Dzierlega K, Huang Y, Yokota T. CRISPR-generated animal models of Duchenne muscular dystrophy. Genes (Basel) 2020;11:342.
95. Ren S, Fu X, Guo W, et al. Profound cellular defects attribute to muscular pathogenesis in the rhesus monkey model of Duchenne muscular dystrophy. Cell 2024:S0092-8674(24)00970.
96. Rodino-Klapac LR, Janssen PM, Montgomery CL, et al. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med 2007;5:45.
97. Potter RA, Peterson EL, Griffin D, et al. Use of plasmapheresis to lower anti-AAV antibodies in nonhuman primates with pre-existing immunity to AAVrh74. Mol Ther Methods Clin Dev 2024;32:101195.
98. Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 2018;29:285-98.
99. Hordeaux J, Lamontagne RJ, Song C, et al. High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury. Mol Ther 2024;32:952-68.
100. Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014;6:220ra10.
101. Graves SS, Storb R. Developments and translational relevance for the canine haematopoietic cell transplantation preclinical model. Vet Comp Oncol 2020;18:471-83.
102. Lupu M, Storb R. Five decades of progress in haematopoietic cell transplantation based on the preclinical canine model. Vet Comp Oncol 2007;5:14-30.
103. Graves SS, Storb R. Evolution of haematopoietic cell transplantation for canine blood disorders and a platform for solid organ transplantation. Vet Med Sci 2021;7:2156-71.
104. Gussoni E, Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390-4.
105. Gussoni E, Bennett RR, Muskiewicz KR, et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002;110:807-14.
106. Dell’Agnola C, Wang Z, Storb R, Tapscott SJ, Kuhr CS, Hauschka SD, et al. Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs. Blood 2004;104:4311-8.
107. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 1989;337:176-9.
108. Tremblay JP, Malouin F, Roy R, et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 1993;2:99-112.
109. Miller RG, Sharma KR, Pavlath GK, et al. Myoblast transplantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 1997;20:469-78.
110. Prattis SM, Horton SB, Van Camp SD, Kornegay JN. Immunohistochemical detection of neural cell adhesion molecule and laminin in X-linked dystrophic dogs and mdx mice. J Comp Pathol 1994;110:253-66.
111. Kornegay JN, Prattis SM, Bogan DJ, et al. Results of myoblast transplantation in a canine model of muscle injury. In: Kakulas BA, Mc HJ, Roses AD, editors. Duchenne muscular dystrophy: animal models and genetic manipulation. San Diego: Raven; 1992. p. 203-12. Available from: https://www.cambridge.org/core/journals/canadian-journal-of-neurological-sciences/article/duchenne-muscular-dystrophy-animal-models-and-genetic-manipulation-1992-edited-by-kakulasba-howellj-and-rosesad-published-by-raven-press-308-pages-108-cdn-approx/DB5C25B79AE3ECFAD1A8C9136074E489 [Last accessed on 14 Oct 2024].
113. Smythe GM, Hodgetts SI, Grounds MD. Problems and solutions in myoblast transfer therapy. J Cell Mol Med 2001;5:33-47.
114. Skuk D, Paradis M, Goulet M, Tremblay JP. Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies. Transplantation 2007;84:1307-15.
115. Sharp NJ, Kornegay JN, Van Camp SD, et al. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 1992;13:115-21.
116. Schatzberg SJ, Anderson LV, Wilton SD, et al. Alternative dystrophin gene transcripts in golden retriever muscular dystrophy. Muscle Nerve 1998;21:991-8.
117. VanBelzen DJ, Malik AS, Henthorn PS, Kornegay JN, Stedman HH. Mechanism of deletion removing all dystrophin exons in a canine model for DMD implicates concerted evolution of X chromosome pseudogenes. Mol Ther Methods Clin Dev 2016;4:62-71.
118. Song Y, Morales L, Malik AS, et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med 2019;25:1505-11.
119. Laporte J, Biancalana V, Tanner SM, et al. MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 2000;15:393-409.
120. Kušíková K, Šoltýsová A, Ficek A, et al. Prognostic value of genotype-phenotype correlations in X-Linked myotubular myopathy and the use of the Face2Gene application as an effective non-invasive diagnostic tool. Genes (Basel) 2023;14:2174.
121. Dowling JJ, Lawlor MW, Das S. X-Linked myotubular myopathy. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews. Seattle 2002;25:1993-2024.
122. Raess MA, Cowling BS, Bertazzi DL, et al. Expression of the neuropathy-associated MTMR2 gene rescues MTM1-associated myopathy. Hum Mol Genet 2017;26:3736-48.
123. Danièle N, Moal C, Julien L, et al. Intravenous administration of a MTMR2-encoding AAV vector ameliorates the phenotype of myotubular myopathy in mice. J Neuropathol Exp Neurol 2018;77:282-95.
124. National Research Council. Models for biomedical research: a new perspective. Washington DC: The National Academy Press; 1985. Available from: https://nap.nationalacademies.org/catalog/19304/models-for-biomedical-research-a-new-perspective [Last accessed on 14 Oct 2024].
125. Kornegay JN, MK Childers. Canine inherited dystrophinopathies and centronuclear myopathies. In: Childers MK, editor. Regenerative medicine for degenerative muscle diseases. New York: Humana Press; 2016. p. 309-29.
126. Patronek GJ, Waters DJ, Glickman LT. Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 1997;52:B171-8.
127. Kornegay JN. The golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 2017;7:9.
128. Tulangekar A, Sztal TE. Inflammation in duchenne muscular dystrophy-exploring the role of neutrophils in muscle damage and regeneration. Biomedicines 2021;9:1366.
129. Tripodi L, Villa C, Molinaro D, Torrente Y, Farini A. The immune system in Duchenne muscular dystrophy pathogenesis. Biomedicines 2021;9:1447.
130. Valentine BA, Cooper BJ, Cummings JF, de Lahunta A. Canine X-linked muscular dystrophy: morphologic lesions. J Neurol Sci 1990;97:1-23.
131. Kakulas BA, Adams RA. Diseases of muscle: pathological foundations of clinical Myology. 4th ed. Philadelphia: Harper & Row Publishers; 1985. p. 389-402. Available from: https://cir.nii.ac.jp/crid/1130000796164051200 [Last accessed on 14 Oct 2024].
132. Fan Z, Wang J, Ahn M, Shiloh-Malawsky Y, et al. Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscul Disord 2014;24:178-91.
133. Kim HK, Merrow AC, Shiraj S, et al. Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments. Pediatr Radiol 2013;43:1327-35.
134. Shinohara I, Kataoka T, Mifune Y, et al. Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle. Sci Rep 2022;12:1557.
135. Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, et al. The role of adipokines in health and disease. Biomedicines 2023;11:1290.
136. Snead EC, Taylor SM, van der Kooij M, et al. Clinical phenotype of X-linked myotubular myopathy in Labrador Retriever puppies. J Vet Intern Med 2015;29:254-60.
137. Jungbluth H, Wallgren-Pettersson C, Laporte J. Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 200;3:26.
138. D'Amico A, Longo A, Fattori F, et al. Hepatobiliary disease in XLMTM: a common comorbidity with potential impact on treatment strategies. Orphanet J Rare Dis 2021;16:425.
139. Karolczak S, Deshwar AR, Aristegui E, et al. Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy. J Clin Invest 2023;133:e166275.
140. Molera C, Sarishvili T, Nascimento A, et al. Intrahepatic cholestasis is a clinically significant feature associated with natural history of X-Linked myotubular myopathy (XLMTM): a case series and biopsy report. J Neuromuscul Dis 2022;9:73-82.
141. Kodippili K, Hakim CH, Burke MJ, et al. SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model. Mol Ther Methods Clin Dev 2024;32:101268.
142. Bradbury AM, Bagel J, Swain G, et al. Combination HSCT and intravenous AAV-mediated gene therapy in a canine model proves pivotal for translation of Krabbe disease therapy. Mol Ther 2024;32:44-58.
143. Franco-Martínez L, Villar M, Tvarijonaviciute A, et al. Serum proteome of dogs at subclinical and clinical onset of canine leishmaniosis. Transbound Emerg Dis 2020;67:318-27.
144. Ramos JN, Hollinger K, Bengtsson NE, Allen JM, Hauschka SD, Chamberlain JS. Development of novel micro-dystrophins with enhanced functionality. Mol Ther 2019;27:623-35.
145. Salva MZ, Himeda CL, Tai PW, et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 2007;15:320-9.
147. Kobayashi YM, Rader EP, Crawford RW, et al. Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 2008;456:511-5.
148. Gentil C, Leturcq F, Ben Yaou R, et al. Variable phenotype of del45-55 Becker patients correlated with nNOSμ mislocalization and RYR1 hypernitrosylation. Hum Mol Genet 2012;21:3449-60.
149. Duan DD. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther 2018;26:2337-56.
150. Elangkovan N, Dickson G. Gene therapy for Duchenne muscular dystrophy. J Neuromuscul Dis 2021;8:S303-16.
151. Wang B, Li J, Qiao C, et al. A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther 2008;15:1099-106.
152. Wang B, Li J, Fu FH, et al. Construction and analysis of compact muscle-specific promoters for AAV vectors. Gene Ther 2008;15:1489-99.
153. Kim S, Buss C, Qiao C, et al. A novel AAV8-based gene therapy for Duchenne muscular dystrophy: preclinical studies in the mdx mouse. Neuromuscul Disord 2021;31:S76.
154. Srivastava A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. Mol Ther Nucleic Acids 2023;32:949-59.
155. Weinmann J, Weis S, Sippel J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun 2020;11:5432.
156. El Andari J, Renaud-Gabardos E, Tulalamba W, et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci Adv 2022;8:eabn4704.
157. Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021;184:4919-38.
158. Ji J, Lefebvre E, Laporte J. Comparative in vivo characterization of newly discovered myotropic adeno-associated vectors. Skelet Muscle 2024;14:9.
159. Shoti J, Qing K, Keeler GD, Duan D, Byrne BJ, Srivastava A. Development of capsid- and genome-modified optimized AAVrh74 vectors for muscle gene therapy. Mol Ther Methods Clin Dev 2023;31:101147.
160. Goedeker NL, Dharia SD, Griffin DA, et al. Evaluation of rAAVrh74 gene therapy vector seroprevalence by measurement of total binding antibodies in patients with Duchenne muscular dystrophy. Ther Adv Neurol Disord 2023;16:17562864221149781.
161. Mendell JR, Proud C, Zaidman CM, et al. Practical considerations for delandistrogene moxeparvovec gene therapy in patients with Duchenne muscular dystrophy. Pediatr Neurol 2024;153:11-18.
162. Gonzalez TJ, Simon KE, Blondel LO, et al. Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. Nat Commun 2022;13:5947.
163. Lu Y, Ling C, Shoti J, et al. Enhanced transgene expression from single-stranded AAV vectors in human cells in vitro and in murine hepatocytes in vivo. Mol Ther Nucleic Acids 2024;35:102196.
164. Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and utrophin-based therapeutic approaches for treatment of Duchenne muscular dystrophy: a comparative review. BioDrugs 2024;38:95-119.
165. Martino AT, Markusic DM. Immune response mechanisms against AAV vectors in animal models. Mol Ther Methods Clin Dev 2019;17:198-208.
166. Bhattacharyya M, Miller LE, Miller AL, Bhattacharyya R. The FDA approval of delandistrogene moxeparvovec-rokl for Duchenne muscular dystrophy: a critical examination of the evidence and regulatory process. Expert Opin Biol Ther 2024;20:1-3.
167. REGENXBIO. REGENXBIO presents interim clinical data from Phase I/II AFFINITY DUCHENNE™ Trial of RGX-202 at 28th Annual International Congress of the World Muscle Society. Available from: https://www.prnewswire.com/news-releases/regenxbio-presents-interim-clinical-data-from-phase-iii-affinity-duchenne-trial-of-rgx-202-at-28th-annual-international-congress-of-the-world-muscle-society-301946289.html [Last accessed on 14 Oct 2024].
168. Veerapandiyan A, Rao V, Dastgir J, et al. RGX-202, an investigational gene therapy for the treatment of Duchenne muscular dystrophy: Interim clinical data (S21. 005). Neurology 2024;102:1.
169. Liang L, Sulaiman N, Yazid MD. A decade of progress in gene targeted therapeutic strategies in Duchenne muscular dystrophy: a systematic review. Front Bioeng Biotechnol 2022;10:833833.
170. Manini A, Abati E, Nuredini A, Corti S, Comi GP. Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: the issue of transgene persistence. Front Neurol 2022;12:814174.
171. Chamberlain JS, Robb M, Braun S, et al. Microdystrophin expression as a surrogate endpoint for Duchenne muscular dystrophy clinical trials. Hum Gene Ther 2023;34:404-15.
172. Hart CC, Lee YI, Xie J, et al. Potential limitations of microdystrophin gene therapy for Duchenne muscular dystrophy. JCI Insight 2024;9:e165869.
173. Sun C, Shen L, Zhang Z, Xie X. Therapeutic strategies for Duchenne muscular dystrophy: an update. Genes (Basel) 2020;11:837.
174. D'Ambrosio ES, Mendell JR. Evolving therapeutic options for the treatment of Duchenne muscular dystrophy. Neurotherapeutics 2023;20:1669-81.
175. Rawls A, Diviak BK, Smith CI, Severson GW, Acosta SA, Wilson-Rawls J. Pharmacotherapeutic approaches to treatment of muscular dystrophies. Biomolecules 2023;13:1536.
176. Mendell JR, Shieh PB, McDonald CM, et al. Expression of SRP-9001 dystrophin and stabilization of motor function up to 2 years post-treatment with delandistrogene moxeparvovec gene therapy in individuals with Duchenne muscular dystrophy. Front Cell Dev Biol 2023;11:1167762.
177. Dreghici R, Redican S, Lawredne J, et al. IGNITE DMD phase I/II Study of SGT-001 microdystrophin gene therapy for DMD: 2-year outcomes update. MDA Clinical and Scientific Conference 2024; doi: 10.1016/j.nmd.2022.07.234.
178. Pfizer press release. Pfizer provides update on Phase 3 study of investigational gene therapy for ambulatory boys with Duchenne muscular dystrophy. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-provides-update-phase-3-study-investigational-gene [Last accessed on 14 Oct 2024].