REFERENCES

1. Germain DP. Fabry disease. Orphanet J Rare Dis 2010;5:30.

2. Thadhani R, Wolf M, West ML, et al. Patients with Fabry disease on dialysis in the United States. Kidney Int 2002;61:249-55.

3. Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney disease: improving global outcomes (KDIGO). Kidney Int 2005;67:2089-100.

4. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA 1999;281:249-54.

5. Spada M, Pagliardini S, Yasuda M, et al. High incidence of later-onset Fabry disease revealed by newborn screening. Am J Hum Genet 2006;79:31-40.

6. Hwu WL, Chien YH, Lee NC, et al. Newborn screening for Fabry disease in Taiwan reveals a high incidence of the later-onset GLA mutation c.936+919G>A (IVS4+919G>A). Hum Mutat 2009;30:1397-405.

7. Lin HY, Chong KW, Hsu JH, et al. High incidence of the cardiac variant of Fabry disease revealed by newborn screening in the Taiwan Chinese population. Circ Cardiovasc Genet 2009;2:450-6.

8. Kermond-Marino A, Weng A, Xi Zhang SK, Tran Z, Huang M, Savige J. Population frequency of undiagnosed Fabry disease in the general population. Kidney Int Rep 2023;8:1373-9.

9. Sirrs S, Clarke JT, Bichet DG, et al. Baseline characteristics of patients enrolled in the Canadian Fabry disease initiative. Mol Genet Metab 2010;99:367-73.

10. Branton MH, Schiffmann R, Sabnis SG, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase a activity and genetic mutations on clinical course. Medicine 2002;81:122-38.

11. Ortiz A, Oliveira JP, Waldek S, Warnock DG, Cianciaruso B, Wanner C. Fabry Registry. Nephropathy in males and females with Fabry disease: cross-sectional description of patients before treatment with enzyme replacement therapy. Nephrol Dial Transplant 2008;23:1600-7.

12. Germain DP, Brand E, Burlina A, et al. Phenotypic characteristics of the p.Asn215Ser (p.N215S) GLA mutation in male and female patients with Fabry disease: a multicenter Fabry registry study. Mol Genet Genom Med 2018;6:492-503.

13. Oder D, Liu D, Hu K, et al. α-galactosidase a genotype N215S Induces a specific cardiac variant of Fabry disease. Circ Cardiovasc Genet 2017;10:e001691.

14. Lavalle L, Thomas AS, Beaton B, et al. Phenotype and biochemical heterogeneity in late onset Fabry disease defined by N215S mutation. PLoS One 2018;13:e0193550.

15. Hsu TR, Sung SH, Chang FP, et al. Endomyocardial biopsies in patients with left ventricular hypertrophy and a common Chinese later-onset Fabry mutation (IVS4 + 919G > A). Orphanet J Rare Dis 2014;9:96.

16. Lin HY, Huang CH, Yu HC, et al. Enzyme assay and clinical assessment in subjects with a Chinese hotspot late-onset Fabry mutation (IVS4 + 919G→A). J Inherit Metab Dis 2010;33:619-24.

17. Lukas J, Scalia S, Eichler S, et al. Functional and clinical consequences of novel α-galactosidase a mutations in Fabry disease. Hum Mutat 2016;37:43-51.

18. Selvarajah M, Nicholls K, Hewitson TD, Becker GJ. Targeted urine microscopy in anderson-Fabry disease: a cheap, sensitive and specific diagnostic technique. Nephrol Dial Transplant 2011;26:3195-202.

19. Fall B, Scott CR, Mauer M, et al. Urinary podocyte loss is increased in patients with Fabry disease and correlates with clinical severity of Fabry nephropathy. PLoS One 2016;11:e0168346.

20. Mignani R, Preda P, Granata A, et al. Isolated microalbuminuria as the first clinical presentation of Fabry disease in an adult heterozygous female. NDT Plus 2009;2:455-7.

21. Marchel D, Trachtman H, Larkina M, et al. The significance of hematuria in podocytopathies. Clin J Am Soc Nephrol 2023;19:56-66.

22. Pisani A, Petruzzelli Annicchiarico L, Pellegrino A, et al. Parapelvic cysts, a distinguishing feature of renal Fabry disease. Nephrol Dial Transplant 2018;33:318-23.

23. Wornell P, Dyack S, Crocker J, Yu W, Acott P. Fabry disease and nephrogenic diabetes insipidus. Pediatr Nephrol 2006;21:1185-8.

24. Sessa A, Meroni M, Battini G, et al. Renal pathological changes in Fabry disease. J Inherit Metab Dis 2001;24:66-70.

25. Schiffmann R, Warnock DG, Banikazemi M, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant 2009;24:2102-11.

26. West M, Nicholls K, Mehta A, et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol 2009;20:1132-9.

27. Schwarting A, Dehout F, Feriozzi S, Beck M, Mehta A, Sunder-Plassmann G. European FOS Investigators. Enzyme replacement therapy and renal function in 201 patients with Fabry disease. Clin Nephrol 2006;66:77-84.

28. Wanner C, Feldt-Rasmussen U, Jovanovic A, et al. Cardiomyopathy and kidney function in agalsidase beta-treated female Fabry patients: a pre-treatment vs. post-treatment analysis. ESC Heart Fail 2020;7:825-34.

29. Arends M, Wanner C, Hughes D, et al. Characterization of classical and nonclassical Fabry disease: a multicenter study. J Am Soc Nephrol 2017;28:1631-41.

30. Arends M, Biegstraaten M, Hughes DA, et al. Retrospective study of long-term outcomes of enzyme replacement therapy in Fabry disease: analysis of prognostic factors. PLoS One 2017;12:e0182379.

31. Drechsler C, Schmiedeke B, Niemann M, et al. Potential role of vitamin D deficiency on Fabry cardiomyopathy. J Inherit Metab Dis 2013;37:289-95.

32. Chiorean A, Lyn N, Kabadi S, et al. Cluster analysis of kidney function decline among males with Fabry disease in a large United States electronic health records database. Nephrol Dial Transplant 2023;38:2350-7.

33. Sharma A, Sartori M, Zaragoza JJ, et al. Fabry’s disease: an example of cardiorenal syndrome type 5. Heart Fail Rev 2015;20:689-708.

34. Siegenthaler M, Huynh-Do U, Krayenbuehl P, et al. Impact of cardio-renal syndrome on adverse outcomes in patients with Fabry disease in a long-term follow-up. Int J Cardiol 2017;249:261-7.

35. Clements JN. Development and current role of sodium glucose cotransporter inhibition in cardiorenal metabolic syndrome. J Cardiovasc Pharmacol 2022;79:593-604.

36. Bird S, Hadjimichael E, Mehta A, Ramaswami U, Hughes D. Fabry disease and incidence of cancer. Orphanet J Rare Dis 2017;12:150.

37. Pagni F, Pieruzzi F, Zannella S, et al. Possible pathogenetic relationship between Fabry disease and renal cell carcinoma. Am J Nephrol 2012;36:537-41.

38. Linthorst GE, Vedder AC, Aerts JM, Hollak CE. Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 2005;353:201-3.

39. Ferreira S, Ortiz A, Germain DP, et al. The alpha-galactosidase A p.Arg118Cys variant does not cause a Fabry disease phenotype: data from individual patients and family studies. Mol Genet Metab 2015;114:248-258.

40. Cerón-Rodríguez M, Ramón-García G, Barajas-Colón E, Franco-Álvarez I, Salgado-Loza JL. Renal globotriaosylceramide deposits for Fabry disease linked to uncertain pathogenicity gene variant c.352C>T/p.Arg118Cys: a family study. Mol Genet Genom Med 2019;7:e981.

41. Lenders M, Weidemann F, Kurschat C, et al. Alpha-galactosidase A p.A143T, a non-Fabry disease-causing variant. Orphanet J Rare Dis 2016;11:54.

42. Terryn W, Vanholder R, Hemelsoet D, et al. Questioning the pathogenic role of the GLA p.Ala143Thr “mutation” in Fabry disease: implications for screening studies and ERT. JIMD Reports; Berlin, Heidelberg: Springer; 2012, pp. 102-8.

43. Nakao S, Kodama C, Takenaka T, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int 2003;64:801-7.

44. Hasbal NB, Caglayan FB, Sakaci T, et al. Unexpectedly high prevalence of low alpha-galactosidase a enzyme activity in patients with focal segmental glomerulosclerosis. Clinics 2020;75:e1811.

45. Mersher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol 2014;5:127.

46. Townsend RR, Orth RM, Clawson CM, Li SC, Li YT. Increased glycosphingolipid excretion associated with proteinuria. J Clin Invest 1978;62:119-23.

47. West M, Cornish M, Auray-Blais C, Hyndman S, Finkle N. Urine Gb3 can be elevated in the absence of Fabry disease: implications for disease screening. In: Canadian Society Nephrology Meeting, St. Johns NL, USA, 27-29 Apr 2012.

48. Ferraz MJ, Marques ARA, Appelman MD, et al. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases. FEBS Lett 2016;590:716-25.

49. Shayman JA, Akira A. Drug induced phospholipidosis: an acquired lysosomal storage disorder. Biochim Biophys Acta 2013;1831:602-11.

50. Choung HYG, Jean-Gilles J, Goldman B. Myeloid bodies is not an uncommon ultrastructural finding. Ultrastruct Pathol 2022;46:130-8.

51. Chong PF, Nakamura K, Kira R. Mulberries in the urine: a tell-tale sign of Fabry disease. J Inherit Metab Dis 2018;41:745-6.

52. Zhou LN, Dong SS, Zhang SZ, Huang LW, Huang W. Concurrent Fabry disease and immunoglobulin a nephropathy: a case report. BMC Nephrol 2023;24:324.

53. Debiec H, Valayannopoulos V, Boyer O, et al. Allo-immune membranous nephropathy and recombinant aryl sulfatase replacement therapy: a need for tolerance induction therapy. J Am Soc Nephrol 2014;25:675-80.

54. Hunley TE, Corzo D, Dudek M, et al. Nephrotic syndrome complicating alpha-glucosidase replacement therapy for Pompe disease. Pediatrics 2004;114:e532-5.

55. Linares D, Luna B, Loayza E, Taboada G, Ramaswami U. Prevalence of Fabry disease in patients with chronic kidney disease: a systematic review and meta-analysis. Mol Genet Metab 2023;140:107714.

56. Schiffmann R, Hughes DA, Linthorst GE, et al. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a “Kidney disease: improving global outcomes” (KDIGO) controversies conference. Kidney Int 2017;91:284-93.

57. Moiseev S, Tao E, Moiseev A, et al. The benefits of family screening in rare diseases: genetic testing reveals 165 new cases of Fabry disease among at-risk family members of 83 index patients. Genes 2022;13:1619.

58. Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults. Kidney Int 2019;95:914-28.

59. Groopman EE, Marasa M, Cameron-Christie S, et al. Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 2019;380:142-51.

60. Jefferies JL, Spencer AK, Lau HA, et al. A new approach to identifying patients with elevated risk for Fabry disease using a machine learning algorithm. Orphanet J Rare Dis 2021;16:518.

61. Rozenfeld P, Feriozzi S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab 2017;122:19-27.

62. Chévrier M, Brakch N, Céline L, et al. Autophagosome maturation is impaired in Fabry disease. Autophagy 2010;6:589-99.

63. Bertoldi G, Caputo I, Driussi G, et al. Biochemical mechanisms beyond glycosphingolipid accumulation in Fabry disease: might they provide additional therapeutic treatments? J Clin Med 2023;12:2063.

64. Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci USA 2008;105:2812-7.

65. Sanchez-Niño MD, Sanz AB, Carrasco S, et al. Globotriaosylsphingosine actions on human glomerular podocytes: implications for Fabry nephropathy. Nephrol Dial Transplant 2011;26:1797-802.

66. Eijk M, Ferraz MJ, Boot RG, Aerts JMFG. Lyso-glycosphingolipids: presence and consequences. Essays Biochem 2020;64:565-78.

67. Nikolaenko V, Warnock DG, Mills K, Heywood WE. Elucidating the toxic effect and disease mechanisms associated with Lyso-Gb3 in Fabry disease. Hum Mol Genet 2023;32:2464-72.

68. van der Veen SJ, Sayed ME, Hollak CEM, et al. Early risk stratification for natural disease course in Fabry patients using plasma globotriaosylsphingosine levels. Clin J Am Soc Nephrol 2023;18:1272-82.

69. Alroy J, Sabnis S, Kopp JB. Renal pathology in Fabry disease. J Am Soc Nephrol 2002;13 Suppl 2:S134-8.

70. Rozenfeld PA, de Los Angeles Bolla M, Quieto P, et al. Pathogenesis of Fabry nephropathy: the pathways leading to fibrosis. Mol Genet Metab 2020;129:132-41.

71. Wanner C, Oliveira JP, Ortiz A, et al. Prognostic indicators of renal disease progression in adults with Fabry disease: natural history data from the Fabry registry. Clin J Am Soc Nephrol 2010;5:2220-8.

72. Germain DP, Waldek S, Banikazemi M, et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease. J Am Soc Nephrol 2007;18:1547-57.

73. Najafian B, Svarstad E, Bostad L, et al. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int 2011;79:663-70.

74. Najafian B, Tøndel C, Svarstad E, Gubler MC, Oliveira JP, Mauer M. Accumulation of globotriaosylceramide in podocytes in Fabry nephropathy is associated with progressive podocyte loss. J Am Soc Nephrol 2020;31:865-75.

75. Najafian B, Silvestroni A, Sokolovskiy A, et al. A novel unbiased method reveals progressive podocyte globotriaosylceramide accumulation and loss with age in females with Fabry disease. Kidney Int 2022;102:173-82.

76. Braun F, Abed A, Sellung D, et al. Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy. J Clin Invest 2023:133.

77. Schiffmann R. Investigating Fabry disease - some lessons learned. Rare Dis Orphan Drugs J 2024;3:4.

78. Jennette, JC, D’Agati, VD. Heptinstall’s pathology of the kidney, 7th ed. Philadelphia: Lippincott Williams and Wilkins; 2014. pp 1232-4.

79. Colvin RB. Fabry disease. In: Colvin RB, Chang A, editors. Diagnostic pathology: kidney diseases, 3rd ed. Philadelphia: Elsevier; 2019. pp. 400-1.

80. Gubler MC, Lenoir G, Grünfeld JP, Ulmann A, Droz D, Habib R. Early renal changes in hemizygous and heterozygous patients with Fabry’s disease. Kidney Int 1978;13:223-35.

81. Svarstad E, Leh S, Skrunes R, Kampevold Larsen K, Eikrem Ø, Tøndel C. Bedside stereomicroscopy of Fabry kidney biopsies: an easily available method for diagnosis and assessment of sphingolipid deposits. Nephron 2018;138:13-21.

82. Colpart P, Félix S. Fabry nephropathy. Arch Pathol Lab Med 2017;141:1127-31.

83. Elleder M, Poupetova H, Kozich V. [Fetal pathology in Fabry's disease and mucopolysaccharidosis type I]. Cesk Patol 1998;34:7-12.

84. Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006;5:567-83.

85. Grafft CA, Fervenza FC, Semret MH, Orloff S, Sethi S. Renal involvement in neimann-pick disease. NDT Plus 2009;2:448-51.

86. Banks DE, Milutinovic J, Desnick RJ, Grabowski GA, Lapp NL, Boehlecke BA. Silicon nephropathy mimicking Fabry’s disease. Am J Nephrol 1983;3:279-84.

87. Lei L, Oh G, Sutherland S, et al. Myelin bodies in LMX1B-associated nephropathy: potential for misdiagnosis. Pediatr Nephrol 2020;35:1647-57.

88. Hirashio S, Ueno T, Naito T, Masaki T. Characteristic kidney pathology, gene abnormality and treatments in LCAT deficiency. Clin Exp Nephrol 2014;18:189-93.

89. Ni HF, Yang Y, Li CQ, Zhou TZ, Liu BC, Wang B. Myeloid bodies caused by COQ2 mutation: a case of concurrent COQ2 nephropathy and IgA nephropathy. Clin Kidney J 2021;14:1697-700.

90. Su H, Ye C, Wen Q, Zhu HY, Yi LX, Zhang C. Case report: lipid inclusion in glomerular endothelial and mesangial cells in a patient after contrast medium injection. BMC Nephrol 2018;19:53.

91. Hull MT, Eble JN. Myelinoid lamellated cytoplasmic inclusions in human renal adenocarcinomas: an ultrastructural study. Ultrastruct Pathol 1988;12:41-8.

92. Kadosawa K, Morikawa T, Konishi Y. Zebra bodies without Fabry disease or hydroxychloroquine. Clin Exp Nephrol 2021;25:94-6.

93. Tøndel C, Kanai T, Larsen KK, et al. Foot process effacement is an early marker of nephropathy in young classic Fabry patients without albuminuria. Nephron 2015;129:16-21.

94. Tøndel C, Bostad L, Hirth A, Svarstad E. Renal biopsy findings in children and adolescents with Fabry disease and minimal albuminuria. Am J Kidney Dis 2008;51:767-76.

95. Valbuena C, Leitão D, Carneiro F, Oliveira JP. Immunohistochemical diagnosis of Fabry nephropathy and localisation of globotriaosylceramide deposits in paraffin-embedded kidney tissue sections. Virchows Arch 2012;460:211-21.

96. Mauer M, Glynn E, Svarstad E, et al. Mosaicism of podocyte involvement is related to podocyte injury in females with Fabry disease. PLoS One 2014;9:e112188.

97. Fogo AB, Bostad L, Svarstad E, et al. Scoring system for renal pathology in Fabry disease: report of the international study group of fabry nephropathy (ISGFN). Nephrol Dial Transplant 2010;25:2168-77.

98. Müller-Höcker J, Schmid H, Weiss M, Dendorfer U, Braun GS. Chloroquine-induced phospholipidosis of the kidney mimicking Fabry’s disease: case report and review of the literature. Hum Pathol 2003;34:285-9.

99. Renwick N, Nasr SH, Chung WK, et al. Foamy podocytes. Am J Kidney Dis 2003;41:891-6.

100. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. JAMA 2019;322:1294-304.

101. Francini-Pesenti F, Ravarotto V, Bertoldi G, Spinella P, Calò LA. Could nutritional therapy take us further in our approaches to Fabry disease? Nutrition 2020;72:110664.

102. Mroczek M, Maniscalco I, Sendel M, Baron R, Seifritz E, Nowak A. Neuropsychiatric symptoms and their association with sex, age, and enzyme replacement therapy in Fabry disease: a systematic review. Front Psychiatry 2022;13:829128.

103. Tahir H, Jackson LL, Warnock DG. Antiproteinuric therapy and fabry nephropathy: sustained reduction of proteinuria in patients receiving enzyme replacement therapy with agalsidase-beta. J Am Soc Nephrol 2007;18:2609-17.

104. Warnock DG, Thomas CP, Vujkovac B, et al. Antiproteinuric therapy and Fabry nephropathy: factors associated with preserved kidney function during agalsidase-beta therapy. J Med Genet 2015;52:860-6.

105. Epstein M, Kovesdy CP, Clase CM, Sood MM, Pecoits-Filho R. Aldosterone, mineralocorticoid receptor activation, and CKD: a review of evolving treatment paradigms. Am J Kidney Dis 2022;80:658-66.

106. Trujillo H, Caravaca-Fontán F, Caro J, Morales E, Praga M. The forgotten antiproteinuric properties of diuretics. Am J Nephrol 2021;52:435-49.

107. Unruh ML, Pankratz VS, Demko JE, Ray EC, Hughey RP, Kleyman TR. Trial of amiloride in type 2 diabetes with proteinuria. Kidney Int Rep 2017;2:893-904.

108. Trimarchi H, Forrester M, Lombi F, et al. Amiloride as an alternate adjuvant antiproteinuric agent in Fabry disease: the potential roles of plasmin and uPAR. Case Rep Nephrol 2014;2014:854521.

109. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020;383:1436-46.

110. Packer M, Butler J, Zannad F, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-preserved trial. Circulation 2021;144:1284-94.

111. Bothou C, Beuschlein F, Nowak A. Endocrine disorders in patients with Fabry disease: insights from a reference centre prospective study. Endocrine 2022;75:728-39.

112. Pisani A, Sabbatini M, Duro G, Colomba P, Riccio E. Antiproteinuric effect of add-on paricalcitol in Fabry disease patients: a prospective observational study. Nephrol Dial Transplant 2015;30:661-6.

113. Keber T, Tretjak M, Cokan Vujkovac A, Mravljak M, Ravber K, Vujkovac B. Paricalcitol as an antiproteinuric agent can result in the deterioration of renal and heart function in a patient with Fabry disease. Am J Case Rep 2017;18:644-8.

114. Larsen T, Mose FH, Bech JN, Pedersen EB. Effect of paricalcitol on renin and albuminuria in non-diabetic stage III-IV chronic kidney disease: a randomized placebo-controlled trial. BMC Nephrol 2013;14:163.

115. Humalda JK, Goldsmith DJA, Thadhani R, de Borst MH. Vitamin D analogues to target residual proteinuria: potential impact on cardiorenal outcomes. Nephrol Dial Transplant 2015;30:1988-94.

116. Dincer MT, Ozcan SG, Ikitimur B, et al. Blood pressure variability in Fabry disease patients. Nephron 2022;146:343-50.

117. Kim SH, Choi SJ. Management of hypertension in Fabry disease. Electrolyte Blood Press 2023;21:8-17.

118. Sims K, Politei J, Banikazemi M, Lee P. Stroke in Fabry disease frequently occurs before diagnosis and in the absence of other clinical events: natural history data from the Fabry Registry. Stroke 2009;40:788-94.

119. Politei JM, Bouhassira D, Germain DP, et al. Pain in Fabry disease: practical recommendations for diagnosis and treatment. CNS Neurosci Ther 2016;22:568-76.

120. Ouyang Y, Zhang W, Zhao Z, et al. Globotriaosylsphingosine improves risk stratification of kidney progression in Fabry disease patients. Clin Chim Acta 2024;556:117851.

121. Pastores GM, Boyd E, Crandall K, Whelan A, Piersall L, Barnett N. Safety and pharmacokinetics of agalsidase alfa in patients with Fabry disease and end-stage renal disease. Nephrol Dial Transplant 2007;22:1920-5.

122. Mignani R, Feriozzi S, Pisani A, et al. Agalsidase therapy in patients with Fabry disease on renal replacement therapy: a nationwide study in Italy. Nephrol Dial Transplant 2008;23:1628-35.

123. Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium-based contrast agent: a systematic review and meta-analysis. JAMA Intern Med 2020;180:223-30.

124. Capelli I, Aiello V, Gasperoni L, et al. Kidney transplant in Fabry disease: a revision of the literature. Medicina 2020;56:284.

125. Odani K, Okumi M, Honda K, Ishida H, Tanabe K. Kidney transplantation from a mother with unrecognized Fabry disease to her son with low α-galactosidase a activity: a 14-year follow-up without enzyme replacement therapy. Nephrology 2016;21:57-9.

126. Puliyanda DP, Wilcox WR, Bunnapradist S, Nast CC, Jordan SC. Fabry disease in a renal allograft. Am J Transplant 2003;3:1030-2.

127. Mignani R, Panichi V, Giudicissi A, et al. Enzyme replacement therapy with agalsidase beta in kidney transplant patients with Fabry disease: a pilot study. Kidney Int 2004;65:1381-5.

128. Naseer MS, Chand R, Coppola S, Abreo A, Sharma M, Singh N. Post-transplant de-novo renal phospholipidosis in a kidney transplant recipient: Fabry disease or something else? Clin Nephrol Case Stud 2020;8:46-8.

129. Fujii H, Kono K, Hara S, Ishimura T, Nishi S. Histological changes of a kidney in a recipient who received an allograft from a patient with Fabry disease. J Nephrol 2020;33:657-9.

130. Aasebø W, Strøm EH, Hovig T, Undset LH, Heiberg A, Jenssen T. Fabry disease in donor kidneys with 3- and 12-year follow-up after transplantation. NDT Plus 2010;3:303-5.

131. Zarate YA, Patterson L, Yin H, Hopkin RJ. A case of minimal change disease in a Fabry patient. Pediatr Nephrol 2010;25:553-6.

132. Lenders M, Oder D, Nowak A, et al. Impact of immunosuppressive therapy on therapy-neutralizing antibodies in transplanted patients with Fabry disease. J Intern Med 2017;282:241-53.

133. PrFABRAZYME®. Available from: https://pdf.hres.ca/dpd_pm/00075174.PDF [Last accessed on 11 Jul 2024].

134. PrREPLAGA®. Available from: https://pdf.hres.ca/dpd_pm/00063277.PDF [Last accessed on 11 Jul 2024].

135. PrGALAFOLD®. Available from: https://pdf.hres.ca/dpd_pm/00071852.PDF [Last accessed on 11 Jul 2024].

136. Benjamin ER, Della Valle MC, Wu X, et al. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med 2017;19:430-8.

137. Eng CM, Guffon N, Wilcox WR, et al. Safety and efficacy of recombinant human alpha-galactosidase a replacement therapy in Fabry’s disease. N Engl J Med 2001;345:9-16.

138. Schiffmann R, Kopp JB, Austin HA 3rd, et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 2001;285:2743-9.

139. Eng CM, Banikazemi M, Gordon RE, et al. A phase 1/2 clinical trial of enzyme replacement in fabry disease: pharmacokinetic, substrate clearance, and safety studies. Am J Hum Genet 2001;68:711-22.

140. Thurberg BL, Rennke H, Colvin RB, et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 2002;62:1933-46.

141. Banikazemi M, Bultas J, Waldek S, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med 2007;146:77-86.

142. Germain DP, Charrow J, Desnick RJ, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet 2015;52:353-8.

143. Cybulla M, Nicholls K, Feriozzi S, et al. Renoprotective effect of agalsidase alfa: a long-term follow-up of patients with Fabry disease. J Clin Med 2022;11:4810.

144. Najafian B, Tøndel C, Svarstad E, Sokolovkiy A, Smith K, Mauer M. One year of enzyme replacement therapy reduces globotriaosylceramide inclusions in podocytes in male adult patients with Fabry disease. PLoS One 2016;11:e0152812.

145. Mauer M, Sokolovskiy A, Barth JA, et al. Reduction of podocyte globotriaosylceramide content in adult male patients with Fabry disease with amenable GLA mutations following 6 months of migalastat treatment. J Med Genet 2017;54:781-6.

146. Tøndel C, Bostad L, Larsen KK, et al. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol 2013;24:137-48.

147. Ramaswami U, Bichet DG, Clarke LA, et al. Low-dose agalsidase beta treatment in male pediatric patients with Fabry disease: a 5-year randomized controlled trial. Mol Genet Metab 2019;127:86-94.

148. Hughes DA, Nicholls K, Shankar SP, et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet 2017;54:288-96.

149. Bichet DG, Torra R, Wallace E, et al. Long-term follow-up of renal function in patients treated with migalastat for Fabry disease. Mol Genet Metab Rep 2021;28:100786.

150. Nowak A, Huynh-Do U, Krayenbuehl PA, Beuschlein F, Schiffmann R, Barbey F. Fabry disease genotype, phenotype, and migalastat amenability: insights from a national cohort. J Inherit Metab Dis 2020;43:326-33.

151. Hughes D, Sunder-Plassmann G, Jovanovic A, et al. FollowME Fabry pathfinders registry: renal effectiveness in a multi-national, multi-center cohort of patients on migalastat treatment for at least three years. Mol Genet Metab 2023;138:107159.

152. Lenders M, Nordbeck P, Kurschat C, et al. Treatment of Fabry's disease with migalastat: outcome from a prospective observational multicenter study (FAMOUS). Clin Pharmacol Ther 2020;108:326-37.

153. West ML, Bichet DG, Iwanochko R, Khan A, Sirrs S, Lemoine K. Initiation of pharmacologic chaperone therapy for Fabry disease in the Canadian Fabry disease initiative (CFDI) registry is not associated with reduction of kidney function. Mol Genet Metab 2024;141:108079.

154. West ML, Robichaud R, Sandila N, Lemoine K. Switch from enzyme replacement therapy to pharmacologic chaperone: improvement in advanced Fabry nephropathy. Mol Genet Metab 2024;141:108077.

155. Biegstraaten M, Arngrímsson R, Barbey F, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis 2015;10:36.

156. Hughes D, Linhart A, Gurevich A, Kalampoki V, Jazukeviciene D, Feriozzi S. FOS Study Group. Prompt agalsidase alfa therapy initiation is associated with improved renal and cardiovascular outcomes in a Fabry outcome survey analysis. Drug Des Devel Ther 2021;15:3561-72.

157. van der Veen SJ, Korver S, Hirsch A, et al. Early start of enzyme replacement therapy in pediatric male patients with classical Fabry disease is associated with attenuated disease progression. Mol Genet Metab 2022;135:163-9.

158. Schiffmann R, Ries M, Blankenship D, et al. Changes in plasma and urine globotriaosylceramide levels do not predict Fabry disease progression over 1 year of agalsidase alfa. Genet Med 2013;15:983-9.

159. Talbot A, Nicholls K, Fletcher JM, Fuller M. A simple method for quantification of plasma globotriaosylsphingosine: utility for Fabry disease. Mol Genet Metab 2017;122:121-5.

160. Bichet DG, Aerts JM, Auray-Blais C, et al. Assessment of plasma lyso-Gb3 for clinical monitoring of treatment response in migalastat-treated patients with Fabry disease. Genet Med 2021;23:192-201.

161. Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med 2016;375:545-55.

162. Lenders M, Stappers F, Niemietz C, et al. Mutation-specific Fabry disease patient-derived cell model to evaluate the amenability to chaperone therapy. J Med Genet 2019;56:548-56.

163. Rombach SM, Aerts JMFG, Poorthuis BJHM, et al. Long-term effect of antibodies against infused alpha-galactosidase a in Fabry disease on plasma and urinary (lyso)Gb3 reduction and treatment outcome. PLoS One 2012;7:e47805.

164. Germain DP, Giugliani R, Hughes DA, et al. Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase a activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis 2012;7:91.

165. Hughes DA, Bichet DG, Giugliani R, et al. Long-term multisystemic efficacy of migalastat on Fabry-associated clinical events, including renal, cardiac and cerebrovascular outcomes. J Med Genet 2023;60:722-31.

166. Schiffmann R, Goker-Alpan O, Holida M, et al. Pegunigalsidase alfa, a novel PEGylated enzyme replacement therapy for Fabry disease, provides sustained plasma concentrations and favorable pharmacodynamics: a 1-year phase 1/2 clinical trial. J Inherit Metab Dis 2019;42:534-44.

167. Linhart A, Dostálová G, Nicholls K, et al. Safety and efficacy of pegunigalsidase alfa in patients with Fabry disease who were previously treated with agalsidase alfa: results from BRIDGE, a phase 3 open-label study. Orphanet J Rare Dis 2023;18:332.

168. Wallace EL, Goker-Alpan O, Wilcox WR, et al. Head-to-head trial of pegunigalsidase alfa versus agalsidase beta in patients with Fabry disease and deteriorating renal function: results from the 2-year randomised phase III BALANCE study. J Med Genet 2024;61:520-30.

169. Deegan PB. Fabry disease, enzyme replacement therapy and the significance of antibody responses. J Inherit Metab Dis 2012;35:227-43.

170. Bodensteiner D, Scott CR, Sims KB, Shepherd GM, Cintron RD, Germain DP. Successful reinstitution of agalsidase beta therapy in Fabry disease patients with previous IgE-antibody or skin-test reactivity to the recombinant enzyme. Genet Med 2008;10:353-8.

171. Talreja N, Butt A, Del Valle RL, Fox RW, Lockey RF. Successful desensitization to agalsidase beta after anaphylaxis. Ann Allergy Asthma Immunol 2014;112:71-2.

172. Linthorst GE, Hollak CE, Donker-Koopman WE, Strijland A, Aerts JM. Enzyme therapy for Fabry disease: neutralizing antibodies toward agalsidase alpha and beta. Kidney Int 2004;66:1589-95.

173. Lenders M, Neußer LP, Rudnicki M, et al. Dose-dependent effect of enzyme replacement therapy on neutralizing antidrug antibody titers and clinical outcome in patients with Fabry disease. J Am Soc Nephrol 2018;29:2879-89.

174. van der Veen SJ, Vlietstra WJ, van Dussen L, et al. Predicting the development of anti-drug antibodies against recombinant alpha-galactosidase a in male patients with classical Fabry disease. Int J Mol Sci 2020;21:5784.

175. Lenders M, Brand E. Assessment and impact of dose escalation on anti-drug antibodies in Fabry disease. Front Immunol 2022;13:1024963.

176. Curelaru S, Desai AK, Fink D, Zehavi Y, Kishnani PS, Spiegel R. A favorable outcome in an infantile-onset Pompe patient with cross reactive immunological material (CRIM) negative disease with high dose enzyme replacement therapy and adjusted immunomodulation. Mol Genet Metab Rep 2022;32:100893.

177. Mhanni AA, Auray-Blais C, Boutin M, et al. Therapeutic challenges in two adolescent male patients with Fabry disease and high antibody titres. Mol Genet Metab Rep 2020;24:100618.

178. Hughes D, Gonzalez D, Maegawa G, et al. Long-term safety and efficacy of pegunigalsidase alfa: a multicenter 6-year study in adult patients with Fabry disease. Genet Med 2023;25:100968.

179. FDA. 2023. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761161s000lbl.pdf [Last accessed on 11 Jul 2024].

180. Lenders M, Pollmann S, Terlinden M, Brand E. Pre-existing anti-drug antibodies in Fabry disease show less affinity for pegunigalsidase alfa. Mol Ther Methods Clin Dev 2022;26:323-30.

181. Guérard N, Oder D, Nordbeck P, et al. Lucerastat, an iminosugar for substrate reduction therapy: tolerability, pharmacodynamics, and pharmacokinetics in patients with Fabry disease on enzyme replacement. Clin Pharmacol Ther 2018;103:703-11.

182. Deegan PB, Goker-Alpan O, Geberhiwot T, et al. Venglustat, an orally administered glucosylceramide synthase inhibitor: assessment over 3 years in adult males with classic Fabry disease in an open-label phase 2 study and its extension study. Mol Genet Metab 2023;138:106963.

183. Khan A, Barber DL, Huang J, et al. Lentivirus-mediated gene therapy for Fabry disease. Nat Commun 2021;12:1178.

184. Hopkin RJ, Ganesh J, Bernat J, et al. Isaralgagene civaparvovec (ST-920) gene therapy in adults with Fabry disease: updated results from an ongoing phase 1/2 study (STAAR). Mol Genet Metab 2024;141:107884.

185. Schiffmann R, Goker-Alpan O, Vockley J, et al. Cardiac effects of 4D-310 in adults with Fabry disease in a phase 1/2 clinical trial: Functional, quality of life, and imaging endpoints in patients with 12 months of follow up. Mol Genet Metab 2023;138:107306.

186. Lek A, Wong B, Keeler A, et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N Engl J Med 2023;389:1203-10.

187. Nagree MS, Felizardo TC, Faber ML, et al. Autologous, lentivirus-modified, T-rapa cell “micropharmacies” for lysosomal storage disorders. EMBO Mol Med 2022;14:e14297.

188. Romano R, Park H, Pios A, Brennan T, Selby MJ, Boyle K. Development of a B cell protein factory to produce sustained therapeutic levels of alpha-galactosidase a for the treatment of Fabry disease. Mol Genet Metab 2023;138:107298.

189. Ter Huurne M, Parker BL, Liu NQ, et al. GLA-modified RNA treatment lowers GB3 levels in iPSC-derived cardiomyocytes from Fabry-affected individuals. Am J Hum Genet 2023;110:1600-5.

190. Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021;134:117-31.

191. Takahashi H, Hirai Y, Migita M, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc Natl Acad Sci USA 2002;99:13777-82.

Rare Disease and Orphan Drugs Journal
ISSN 2771-2893 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/