REFERENCES
3. Synofzik M, van Roon-Mom WMC, Marckmann G, et al. Preparing n-of-1 antisense oligonucleotide treatments for rare neurological diseases in europe: genetic, regulatory, and ethical perspectives. Nucleic Acid Ther 2022;32:83-94.
4. Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9
5. Bennett CF, Krainer AR, Cleveland DW. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu Rev Neurosci 2019;42:385-406.
6. Hu B, Weng Y, Xia XH, Liang XJ, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med 2019;21:e3097.
7. Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biol 2022;19:594-608.
8. Brunet de Courssou JB, Durr A, Adams D, Corvol JC, Mariani LL. Antisense therapies in neurological diseases. Brain 2022;145:816-31.
9. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978;75:280-4.
10. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978;75:285-8.
11. Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 2018;38:1125-48.
12. Gan W, Guan Z, Liu J, et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 2011;25:2041-56.
13. Pang J, Guo Q, Lu Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front Microbiol 2022;13:1034811.
14. Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 2005;121:1005-16.
15. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
16. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998;95:15502-7.
17. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494-498.
18. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2006;2:711-9.
19. Lisa J. Scherer LJ, Rossi JJ. Principles of RNAi trigger expression for gene therapy. Advanced Textbook on Gene Transfer, Gene Therapy and Genetic Pharmacology. 2014; pp53-72; Editor Scherman Daniel. Imperial College Press. ISBN: 9781786346872.
20. Snead NM, Rossi JJ. Biogenesis and function of endogenous and exogenous siRNAs. Wiley Interdiscip Rev RNA 2010;1:117-31.
22. Foster DJ, Brown CR, Shaikh S, et al. Advanced siRNA designs further improve
23. Gosselin NH, Schuck VJA, Barriere O, et al. Translational population-pharmacodynamic modeling of a novel long-acting siRNA therapy, inclisiran, for the treatment of hypercholesterolemia. Clin Pharmacol Ther 2023;113:328-38.
24. Langlois MA, Boniface C, Wang G, et al. Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells. J Biol Chem 2005;280:16949-54.
25. Sobczak K, Wheeler TM, Wang W, Thornton CA. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy. Mol Ther 2013;21:380-7.
26. Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, et al. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet 2015;24:4971-83.
27. Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 2007;18:363-71.
28. Gantier MP, Sadler AJ, Williams BR. Fine-tuning of the innate immune response by microRNAs. Immunol Cell Biol 2007;85:458-62.
29. Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008;452:591-7.
30. Cho WG, Albuquerque RJ, Kleinman ME, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci U S A 2009;106:7137-42.
31. Bramsen JB, Pakula MM, Hansen TB, et al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res 2010;38:5761-73.
32. Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017;35:238-48.
33. Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: a review. J Biol Chem 2021;296:100416.
34. Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 2011;39:4795-807.
35. Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther 2014;24:374-87.
36. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015;87:46-51.
37. Crooke ST. Vitravene-another piece in the mosaic. Antisense Nucleic Acid Drug Dev 1998;8:vii-viii.
38. Furdon PJ, Dominski Z, Kole R. RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res 1989;17:9193-204.
39. Zhang L, Liang XH, De Hoyos CL, et al. The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2'-O-methyl in selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PS-ASOs. Nucleic Acid Ther 2022;32:401-11.
40. Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997;7:187-95.
41. Moulton JD. Using morpholinos to control gene expression. Curr Protoc Nucleic Acid Chem 2017;68:4.30.1-4.30.29.
42. Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 2005;5:550-5.
43. Renneberg D, Bouliong E, Reber U, Schümperli D, Leumann CJ. Antisense properties of tricyclo-DNA. Nucleic Acids Res 2002;30:2751-7.
44. Goyenvalle A, Leumann C, Garcia L. Therapeutic potential of tricyclo-DNA antisense oligonucleotides. J Neuromuscul Dis 2016;3:157-67.
45. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991;254:1497-500.
46. McMahon BM, Mays D, Lipsky J, Stewart JA, Fauq A, Richelson E. Pharmacokinetics and tissue distribution of a peptide nucleic acid after intravenous administration. Antisense Nucleic Acid Drug Dev 2002;12:65-70.
47. Lennox KA, Behlke MA. A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 2010;27:1788-99.
48. Jearawiriyapaisarn N, Moulton HM, Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 2008;16:1624-9.
49. Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 2016;113:10962-7.
50. Tajik-Ahmadabad B, Polyzos A, Separovic F, Shabanpoor F. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. Int J Pharm 2017;532:21-8.
51. Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts'O PO, Frost JJ. Tissue distribution and metabolism of the [32P]-labeled oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse. Antisense Nucleic Acid Drug Dev 1997;7:141-9.
52. Maier MA, Yannopoulos CG, Mohamed N, et al. Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate cluster for cellular targeting. Bioconjug Chem 2003;14:18-29.
53. Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic Drug. Mol Ther 2020;28:1759-71.
54. Schlegel MK, Janas MM, Jiang Y, et al. From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res 2022;50:6656-70.
55. Gennemark P, Walter K, Clemmensen N, et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci Transl Med 2021;13:eabe9117.
56. Angeli E, Nguyen TT, Janin A, Bousquet G. How to make anticancer drugs cross the blood-brain barrier to treat brain metastases. Int J Mol Sci 2019;21:22.
57. Kawasaki AM, Casper MD, Freier SM, et al. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 1993;36:831-41.
58. Seth PP, Siwkowski A, Allerson CR, et al. Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 2009;52:10-3.
59. Shen W, De Hoyos CL, Sun H, et al. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res 2018;46:2204-17.
60. Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016;44:2093-109.
61. Kasuya T, Hori S, Watanabe A, et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci Rep 2016;6:30377.
62. Alterman JF, Godinho BMDC, Hassler MR, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol 2019;37:884-94.
63. . Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. US Pat; 2019. 1-240.
64. Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020;5:101.
65. Elkayam E, Parmar R, Brown CR, et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res 2017;45:3528-36.
66. Brown CR, Gupta S, Qin J, et al. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res 2020;48:11827-44.
67. Kel'in AV, Zlatev I, Harp J, et al. Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides. J Org Chem 2016;81:2261-79.
68. Schlegel MK, Janas MM, Jiang Y, et al. From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res 2022;50:6656-70.
69. Quan D, Obici L, Berk JL, et al. Impact of baseline polyneuropathy severity on patisiran treatment outcomes in the APOLLO trial. Amyloid 2023;30:49-58.
70. Ranasinghe P, Addison ML, Dear JW, Webb DJ. Small interfering RNA: discovery, pharmacology and clinical development-an introductory review. Br J Pharmacol 2022; doi: 10.1111/bph.15972.
71. Wei Y, Li X, Lin J, et al. Oral Delivery of siRNA Using fluorinated, small-sized nanocapsules toward anti-inflammation treatment. Adv Mater 2023;35:e2206821.
72. Busignies V, Arruda DC, Charrueau C, et al. Compression of Vectors for Small Interfering RNAs Delivery: Toward Oral Administration of siRNA Lipoplexes in Tablet Forms. Mol Pharm 2020;17:1159-69.
73. Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 2006;58:1203-23.
74. Scherman D, Rousseau A, Bigey P, Escriou V. Genetic pharmacology: progresses in siRNA delivery and therapeutic applications. Gene Ther 2017;24:151-6.
75. Khoury M, Escriou V, Courties G, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 2008;58:2356-67.
76. Courties G, Baron M, Presumey J, et al. Cytosolic phospholipase A2α gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis. Arthritis Rheum 2011;63:681-90.
77. Available from: Orphanet: https://www.orpha.net/consor/cgi-bin/Disease.php?lng=EN [Last accessed on 29 May 2023].
78. Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in duchenne muscular dystrophy: the importance of the secondary therapies. Exp Cell Res 2022;410:112968.
79. Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988;53:219-28.
80. Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995;9:184-90.
81. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988;2:90-5.
82. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006;34:135-44.
83. Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 2009;30:293-9.
84. Neri M, Rossi R, Trabanelli C, et al. The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front Genet 2020;11:131.
85. Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004;306:1796-9.
86. Denti MA, Rosa A, D'Antona G, et al. Chimeric adeno-associated virus/antisense U1 small nuclear RNA effectively rescues dystrophin synthesis and muscle function by local treatment of mdx mice. Hum Gene Ther 2006;17:565-74.
87. Stein CA. Eteplirsen Approved for duchenne muscular dystrophy: the FDA faces a difficult choice. Mol Ther 2016;24:1884-5.
88. Flanigan KM, Voit T, Rosales XQ, et al. Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: results of a double-blind randomized clinical trial. Neuromuscul Disord 2014;24:16-24.
89. Deng J, Zhang J, Shi K, Liu Z. Drug development progress in duchenne muscular dystrophy. Front Pharmacol 2022;13:950651.
90. Melki J, Lefebvre S, Burglen L, et al. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 1994;264:1474-7.
91. Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155-65.
92. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014;83:810-7.
93. Kaufmann P, McDermott MP, Darras BT, et al. Muscle Study Group (MSG); Pediatric Neuromuscular Clinical Research Network for Spinal Muscular Atrophy (PNCR). Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology 2012;79:1889-97.
94. Rochette CF, Gilbert N, Simard LR. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet 2001;108:255-66.
95. Burlet P, Bürglen L, Clermont O, et al. Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease. J Med Genet 1996;33:281-3.
96. Wirth B, Brichta L, Schrank B, et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006;119:422-8.
97. Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 2006;26:1333-46.
98. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 2008;82:834-48.
99. Hua Y, Liu YH, Sahashi K, Rigo F, Bennett CF, Krainer AR. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev 2015;29:288-97.
100. Touznik A, Maruyama R, Hosoki K, Echigoya Y, Yokota T. LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 2017;7:3672.
101. Benkhelifa-Ziyyat S, Besse A, Roda M, et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 2013;21:282-90.
102. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of
103. ANDRADE C. A peculiar form of peripheral neuropathy: familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 1952;75:408-27.
104. Jacobson DR, Pastore RD, Yaghoubian R, et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med 1997;336:466-73.
105. Dyck PJB, Coelho T, Waddington Cruz M, et al. Neuropathy symptom and change: Inotersen treatment of hereditary transthyretin amyloidosis. Muscle Nerve 2020;62:509-15.
106. Westermark P, Sletten K, Johansson B, Cornwell GG 3rd. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci U S A 1990;87:2843-5.
107. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018;379:22-31.
108. Sewing S, Roth AB, Winter M, et al. Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia. PLoS One 2017;12:e0187574.
109. Flierl U, Nero TL, Lim B, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med 2015;212:129-37.
110. Severi D, Palumbo G, Spina E, et al. A case of severe increase of liver enzymes in a ATTRv patient after one year of inotersen treatment. Neurol Sci 2023;44:1419-22.
111. Alnylam pharmaceuticals highlights of US prescribing information. Available from:https://www.alnylam.com/ [Last accessed on 29 May 2023].
112. Marimani MD, Ely A, Buff MC, et al. Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J Control Release 2015;209:198-206.
113. Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for clinical translation of sirna therapeutics. Acc Chem Res 2019;52:2435-44.
114. van der Meel R, Chen S, Zaifman J, et al. Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery. Small 2021;17:e2103025.
115. Böttger R, Pauli G, Chao PH, et al. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020;154-155:79-101.
116. Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol 2021;189:114432.
117. Weng YH, Xiao HH, Zhang JC, Liang XJ, Huang YY. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019;37:801-25.
118. Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther 2018;28:109-18.
119. Chaumet-Riffaud P, Martinez-Duncker I, Marty AL, et al. Synthesis and application of lactosylated, 99mTc chelating albumin for measurement of liver function. Bioconjug Chem 2010;21:589-96.
120. Salmon H, Gahoual R, Houzé P, et al. Europium labeled lactosylated albumin as a model workflow for the development of biotherapeutics. Nanomedicine 2019;18:21-30.
121. Habtemariam BA, Karsten V, Attarwala H, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther 2021;109:372-82.
122. Adams D, Tournev IL, Taylor MS, et al. HELIOS-A Collaborators. Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 2023;30:1-9.
123. Ando Y, Adams D, Benson MD, et al. Guidelines and new directions in the therapy and monitoring of ATTRv amyloidosis. Amyloid 2022;29:143-55.
124. Echaniz-Laguna A, Cauquil C, Labeyrie C, Adams D. Treating hereditary transthyretin amyloidosis: Present & future challenges. Rev Neurol 2023;179:30-4.
125. Aimo A, Castiglione V, Rapezzi C, et al. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat Rev Cardiol 2022;19:655-67.
126. Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res 2017;45:12388-400.
127. Kim Y, Jo M, Schmidt J, et al. Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models. Mol Ther 2019;27:1547-57.
128. Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell 1992;69:385.
129. Konieczny P, Stepniak-Konieczna E, Sobczak K. MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res 2014;42:10873-87.
130. Goodwin M, Mohan A, Batra R, et al. MBNL Sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep 2015;12:1159-68.
131. Overby SJ, Cerro-Herreros E, Llamusi B, Artero R. RNA-mediated therapies in myotonic dystrophy. Drug Discov Today 2018;23:2013-22.
132. Lee JE, Bennett CF, Cooper TA. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci USA 2012;109:4221-6.
133. A safety and tolerability study of multiple doses of ISIS-DMPKRx in adults with myotonic dystrophy Type 1. Available from: https://clinicaltrials.gov/ct2/show/NCT02312011 [Last accessed on 29 May 2023].
134. Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release 2016;237:1-13.
135. Safety, tolerability, pharmacodynamic, efficacy, and pharmacokinetic study of dyne-101 in participants with myotonic dystrophy Type 1 (ACHIEVE). Available from: https://www.clinicaltrials.gov/ct2/show/NCT05481879 [Last accessed on 29 May 2023].
136. Nguyen Q, Yokota T. Degradation of Toxic RNA in myotonic dystrophy using gapmer antisense oligonucleotides. In: Yokota T, Maruyama R, editors. Gapmers. New York: Springer US; 2020. pp. 99-109.
137. Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, et al. Therapeutic potential of antagomiR-23b for treating myotonic dystrophy. Mol Ther Nucleic Acids 2020;21:837-49.
138. Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest 2007;117:3952-7.
139. Negishi Y, Endo-takahashi Y, Ishiura S. Exon skipping by ultrasound-enhanced delivery of morpholino with bubble liposomes for myotonic dystrophy model mice. In: Yokota T, Maruyama R, editors. Exon Skipping and Inclusion Therapies. New York: Springer; 2018. pp. 481-7.
140. Xia X, Zhou H, Huang Y, Xu Z. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo. Neurobiol Dis 2006;23:578-86.
141. Lombardi MS, Jaspers L, Spronkmans C, et al. A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference. Exp Neurol 2009;217:312-9.
142. Hauser S, Helm J, Kraft M, Korneck M, Hübener-Schmid J, Schöls L. Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons. Mol Ther Nucleic Acids 2022;27:99-108.
143. Pfister EL, Kennington L, Straubhaar J, et al. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients. Curr Biol 2009;19:774-8.
144. Kay C, Collins JA, Caron NS, et al. A comprehensive haplotype-targeting strategy for allele-specific HTT suppression in huntington disease. Am J Hum Genet 2019;105:1112-25.
145. Conroy F, Miller R, Alterman JF, et al. Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington's disease models. Nat Commun 2022;13:5802.
146. Trochet D, Prudhon B, Mekzine L, et al. Benefits of therapy by dynamin-2-mutant-specific silencing are maintained with time in a mouse model of dominant centronuclear myopathy. Mol Ther Nucleic Acids 2022;27:1179-90.
147. Dudhal S, Mekzine L, Prudhon B, et al. Development of versatile allele-specific siRNAs able to silence all the dominant dynamin 2 mutations. Mol Ther Nucleic Acids 2022;29:733-48.
148. Züchner S, Noureddine M, Kennerson M, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate charcot-marie-tooth disease. Nat Genet 2005;37:289-94.
149. Sambuughin N, Goldfarb LG, Sivtseva TM, et al. Adult-onset autosomal dominant spastic paraplegia linked to a GTPase-effector domain mutation of dynamin 2. BMC Neurol 2015;15:223.
150. Fujise K, Noguchi S, Takeda T. Centronuclear myopathy caused by defective membrane remodelling of dynamin 2 and BIN1 variants. Int J Mol Sci 2022;23:6274.
151. Wang L, Barylko B, Byers C, Ross JA, Jameson DM, Albanesi JP. Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers. J Biol Chem 2010;285:22753-7.
152. Cowling BS, Chevremont T, Prokic I, et al. Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. J Clin Invest 2014;124:1350-63.
153. Koutsopoulos OS, Kretz C, Weller CM, et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 2013;21:637-42.
154. Study of TD101, a Small interfering RNA (siRNA) designed for treatment of pachyonychia congenita. Available from: https://clinicaltrials.gov/ct2/show/NCT00716014 [Last accessed on 29 May 2023].
155. Leachman SA, Hickerson RP, Schwartz ME, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther 2010;18:442-6.
156. Trochet D, Prudhon B, Vassilopoulos S, Bitoun M. Therapy for dominant inherited diseases by allele-specific RNA interference: successes and pitfalls. Curr Gene Ther 2015;15:503-10.
157. Roth F, Dhiab J, Boulinguiez A, et al. Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022;144:1157-70.
158. Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013;280:4230-50.
159. Malerba A, Klein P, Bachtarzi H, et al. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 2017;8:14848.
160. Malerba A, Klein P, Lu-Nguyen N, et al. Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed by AAV-mediated knockdown and replacement of mutant expanded PABPN1. Hum Mol Genet 2019;28:3301-8.
161. Strings-Ufombah V, Malerba A, Kao SC, et al. BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy. Mol Ther Nucleic Acids 2021;24:67-78.
162. Cao W, Lia R, Pei X, et al. Antibody–siRNA conjugates (ARC): emerging siRNA drug formulation. Medicine in Drug Discovery 2022;15:100128.
163. Zlatev I, Castoreno A, Brown CR, et al. Reversal of siRNA-mediated gene silencing in vivo. Nat Biotechnol 2018;36:509-11.
164. Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016;44:2093-109.
165. Kasuya T, Hori S, Watanabe A, et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci Rep 2016;6:30377.
166. Yasuhara H, Yoshida T, Sasaki K, Obika S, Inoue T. Reduction of off-target effects of gapmer antisense oligonucleotides by oligonucleotide extension. Mol Diagn Ther 2022;26:117-27.
167. Kobayashi Y, Tian S, Ui-Tei K. The siRNA off-target effect is determined by base-pairing stabilities of two different regions with opposite effects. Genes 2022;13:319.
168. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 2012;20:513-24.
170. Grimm D, Wang L, Lee JS, et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 2010;120:3106-19.
171. Cardinali B, Provenzano C, Izzo M, et al. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene. Mol Ther Nucleic Acids 2022;27:184-99.
172. Wallace LM, Garwick-Coppens SE, Tupler R, Harper SQ. RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1). Mol Ther 2011;19:2048-54.
173. Gautier B, Hajjar H, Soares S, et al. AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat model of Charcot-Marie-Tooth disease 1 A. Nat Commun 2021;12:2356.
174. Morelli KH, Griffin LB, Pyne NK, et al. Allele-specific RNA interference prevents neuropathy in charcot-marie-tooth disease type 2D mouse models. J Clin Invest 2019;129:5568-83.
175. Muraine L, Bensalah M, Dhiab J, et al. Transduction efficiency of adeno-associated virus serotypes after local injection in mouse and human skeletal muscle. Hum Gene Ther 2020;31:233-40.
176. Boivin M, Charlet-Berguerand N. Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins? Front Genet 2022;13:843014.
177. Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in fragile X tremor ataxia syndrome. Brain Res 2018;1693:43-54.
178. German CA, Shapiro MD. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 2020;34:1-9.
179. Lemaitre MM. Individualized antisense oligonucleotide therapies: how to approach the challenge of manufacturing these oligos from a chemistry, manufacturing, and control-regulatory standpoint. Nucleic Acid Ther 2022;32:101-10.
180. Crooke ST. Meeting the needs of patients with ultrarare diseases. Trends Mol Med 2022;28:87-96.
181. Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019;381:1644-52.
182. Treatment of a single patient with CRD-TMH-001. Available from: https://clinicaltrials.gov/ct2/show/NCT05514249 [Last accessed on 29 May 2023].