REFERENCES

1. Wang S, Tao Z, Persily SM, Clarens AF. CO2 adhesion on hydrated mineral surfaces. Environ Sci Technol 2013;47:11858-65.

2. Demir-yilmaz I, Ftouhi MS, Balayssac S, Guiraud P, Coudret C, Formosa-dague C. Bubble functionalization in flotation process improve microalgae harvesting. Chem Eng J 2023;452:139349.

3. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003.

4. Iglauer S, Pentland CH, Busch A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour Res 2015;51:729-74.

5. Xing Y, Gui X, Pan L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation. Adv Colloid Interface Sci 2017;246:105-32.

6. Drelich J, Chibowski E, Meng DD, Terpilowski K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011;7:9804-28.

7. Wang Z, Lu Q, Wang J, et al. Nanomechanical insights into hydrophobic interactions of mineral surfaces in interfacial adsorption, aggregation and flotation processes. Chem Eng J 2023;455:140642.

8. Heyes G, Trahar W. The natural flotability of chalcopyrite. Int J Miner Process 1977;4:317-44.

9. Wei Z, Sun W, Wang P, Han H, Liu D. The structure analysis of metal-organic complex collector: from single crystal, liquid phase, to solid/liquid interface. J Mol Liq 2023;382:122029.

10. Bepete G, Anglaret E, Ortolani L, et al. Surfactant-free single-layer graphene in water. Nat Chem 2017;9:347-52.

11. Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv Mater 2014;26:2683-7.

12. Xie L, Wang J, Lu Q, et al. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Adv Colloid Interface Sci 2021;295:102491.

13. Meyer EE, Rosenberg KJ, Israelachvili J. Recent progress in understanding hydrophobic interactions. Proc Natl Acad Sci U S A 2006;103:15739-46.

14. Israelachvili J, Pashley R. The hydrophobic interaction is long range, decaying exponentially with distance. Nature 1982;300:341-2.

15. Cui X, Liu J, Xie L, et al. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity. Angew Chem Int Ed Engl 2018;57:11903-8.

16. Cui X, Liu J, Xie L, Huang J, Zeng H. Interfacial ion specificity modulates hydrophobic interaction. J Colloid Interface Sci 2020;578:135-45.

17. Ma CD, Wang C, Acevedo-Vélez C, Gellman SH, Abbott NL. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 2015;517:347-50.

18. Donaldson SH Jr, Røyne A, Kristiansen K, et al. Developing a general interaction potential for hydrophobic and hydrophilic interactions. Langmuir 2015;31:2051-64.

19. Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature 2005;437:640-7.

20. Faghihnejad A, Zeng H. Hydrophobic interactions between polymer surfaces: using polystyrene as a model system. Soft Matter 2012;8:2746-59.

21. Shi C, Cui X, Xie L, et al. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 2015;9:95-104.

22. Xie L, Wang J, Huang J, et al. Anisotropic polymer adsorption on molybdenite basal and edge surfaces and interaction mechanism with air bubbles. Front Chem 2018;6:361.

23. Gillies G, Kappl M, Butt HJ. Direct measurements of particle-bubble interactions. Adv Colloid Interface Sci 2005;114-5:165-72.

24. Xie L, Shi C, Cui X, Zeng H. Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids. Langmuir 2017;33:3911-25.

25. Cui X, Shi C, Xie L, Liu J, Zeng H. Probing interactions between air bubble and hydrophobic polymer surface: impact of solution salinity and interfacial nanobubbles. Langmuir 2016;32:11236-44.

26. Xie L, Shi C, Wang J, et al. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope. Langmuir 2015;31:2438-46.

27. Xie L, Wang J, Yuan D, et al. Interaction mechanisms between air bubble and molybdenite surface: impact of solution salinity and polymer adsorption. Langmuir 2017;33:2353-61.

28. Shi C, Cui X, Zhang X, et al. Interaction between air bubbles and superhydrophobic surfaces in aqueous solutions. Langmuir 2015;31:7317-27.

29. Johnson DJ, Miles NJ, Hilal N. Quantification of particle-bubble interactions using atomic force microscopy: a review. Adv Colloid Interface Sci 2006;127:67-81.

30. Ralston J, Dukhin SS, Mishchuk NA. Wetting film stability and flotation kinetics. Adv Colloid Interface Sci 2002;95:145-236.

31. Shi C, Yan B, Xie L, et al. Long-range hydrophilic attraction between water and polyelectrolyte surfaces in oil. Angew Chem Int Ed Engl 2016;55:15017-21.

32. Ren S, Masliyah J, Xu Z. Studying bitumen-bubble interactions using atomic force microscopy. Colloids Surf A Physicochem Eng Asp 2014;444:165-72.

33. Tabor D, Winterton RHS. The direct measurement of normal and retarded van der Waals forces. Proc R Soc Lond A 1969;312:435-50.

34. Israelachvili JN, Pashley RM. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solutions. J Colloid Interface Sci 1984;98:500-14.

35. Zhang J, Zeng H. Intermolecular and surface interactions in engineering processes. Engineering 2021;7:63-83.

36. Pushkarova RA, Horn RG. Surface forces measured between an air bubble and a solid surface in water. Colloids Surf A Physicochem Eng Asp 2005;261:147-52.

37. Manica R, Connor JN, Clasohm LY, Carnie SL, Horn RG, Chan DY. Transient responses of a wetting film to mechanical and electrical perturbations. Langmuir 2008;24:1381-90.

38. Pushkarova RA, Horn RG. Bubble-solid interactions in water and electrolyte solutions. Langmuir 2008;24:8726-34.

39. Attard P, Miklavcic SJ. Effective spring constant of bubbles and droplets. Langmuir 2001;17:8217-23.

40. Attard P, Miklavcic SJ. Effective spring description of a bubble or a droplet interacting with a particle. J Colloid Interface Sci 2002;247:255-7.

41. Chan DYC, Manor O, Connor JN, Horn RG. Soft matter: from shapes to forces on the nanoscale. Soft Matter 2008;4:471-4.

42. Pan L, Yoon R. Measurement of hydrophobic forces in thin liquid films of water between bubbles and xanthate-treated gold surfaces. Miner Eng 2016;98:240-50.

43. Wang L, Sharp D, Masliyah J, Xu Z. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus. Langmuir 2013;29:3594-603.

44. Shahalami M, Wang L, Wu C, Masliyah JH, Xu Z, Chan DY. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids. Adv Colloid Interface Sci 2015;217:31-42.

45. Zhang X, Tchoukov P, Manica R, Wang L, Liu Q, Xu Z. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus. Soft Matter 2016;12:9105-14.

46. Schilling J, Sengupta K, Goennenwein S, Bausch AR, Sackmann E. Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys Rev E Stat Nonlin Soft Matter Phys 2004;69:021901.

47. Chan DY, Klaseboer E, Manica R. Theory of non-equilibrium force measurements involving deformable drops and bubbles. Adv Colloid Interface Sci 2011;165:70-90.

48. Manica R, Chan DY. Drainage of the air-water-quartz film: experiments and theory. Phys Chem Chem Phys 2011;13:1434-9.

49. Israelachvili JN. Intermolecular and surface forces. 3rd ed. 2011.

50. Smith AM, Borkovec M, Trefalt G. Forces between solid surfaces in aqueous electrolyte solutions. Adv Colloid Interface Sci 2020;275:102078.

51. Tabor RF, Wu C, Grieser F, Dagastine RR, Chan DY. Measurement of the hydrophobic force in a soft matter system. J Phys Chem Lett 2013;4:3872-7.

52. Tabor RF, Grieser F, Dagastine RR, Chan DY. Measurement and analysis of forces in bubble and droplet systems using AFM. J Colloid Interface Sci 2012;371:1-14.

53. Bhattacharjee S, Elimelech M. Surface element integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate. J Colloid Interface Sci 1997;193:273-85.

54. Butt H. A Technique for measuring the force between a colloidal particle in water and a bubble. J Colloid Interface Sci 1994;166:109-17.

55. Ducker WA, Xu Z, Israelachvili JN. Measurements of hydrophobic and DLVO forces in bubble-surface interactions in aqueous solutions. Langmuir 1994;10:3279-89.

56. Fielden ML, Hayes RA, Ralston J. Surface and capillary forces affecting air bubble-particle interactions in aqueous electrolyte. Langmuir 1996;12:3721-7.

57. Preuss M, Butt H. Direct measurement of particle-bubble interactions in aqueous electrolyte:  dependence on surfactant. Langmuir 1998;14:3164-74.

58. Gillies G, Kappl M, Butt HJ. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte. Langmuir 2005;21:5882-6.

59. Nguyen A, Nalaskowski J, Miller J. A study of bubble-particle interaction using atomic force microscopy. Miner Eng 2003;16:1173-81.

60. Nguyen A, Evans G, Nalaskowski J, Miller J. Hydrodynamic interaction between an air bubble and a particle: atomic force microscopy measurements. Exp Therm Fluid Sci 2004;28:387-94.

61. Gillies G, Prestidge CA, Attard P. Determination of the separation in colloid probe atomic force microscopy of deformable bodies. Langmuir 2001;17:7955-6.

62. Gillies G, Prestidge CA. Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Adv Colloid Interface Sci 2004;108-9:197-205.

63. Taran E, Hampton MA, Nguyen AV, Attard P. Anomalous time effect on particle-bubble interactions studied by atomic force microscopy. Langmuir 2009;25:2797-803.

64. Xing Y, Xu M, Li M, Jin W, Cao Y, Gui X. Role of DTAB and SDS in bubble-particle attachment: AFM force measurement, attachment behaviour visualization, and contact angle study. Minerals 2018;8:349.

65. Xu M, Xing Y, Cao Y, Gui X. Effect of dodecane and oleic acid on the attachment between oxidized coal and bubbles. Minerals 2018;8:29.

66. Gomez-flores A, Bradford SA, Hwang G, Heyes GW, Kim H. Particle-bubble interaction energies for particles with physical and chemical heterogeneities. Minerals Engineering 2020;155:106472.

67. Drelich JW, Bowen PK. Hydrophobic nano-asperities in control of energy barrier during particle-surface interactions. Surf Innov 2015;3:164-71.

68. Bargozin H, Hadadhania RA, Amiri TY. Influence of chemical heterogeneity and nanoscale roughness on the DLVO energy interaction by spherical coordinates. J Dispers Sci Technol 2016;37:806-15.

69. Bendersky M, Davis JM. DLVO interaction of colloidal particles with topographically and chemically heterogeneous surfaces. J Colloid Interface Sci 2011;353:87-97.

70. Shen C, Bradford SA, Li T, Li B, Huang Y. Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? J Nanopart Res 2018;20:165.

71. Krasowska M, Zawala J, Malysa K. Air at hydrophobic surfaces and kinetics of three phase contact formation. Adv Colloid Interface Sci 2009;147-8:155-69.

72. Koh P, Schwarz M. CFD modelling of bubble-particle attachments in flotation cells. Miner Eng 2006;19:619-26.

73. Calgaroto S, Azevedo A, Rubio J. Flotation of quartz particles assisted by nanobubbles. Int J Miner Process 2015;137:64-70.

74. Zhang X, Manica R, Tang Y, Tchoukov P, Liu Q, Xu Z. Probing boundary conditions at hydrophobic solid-water interfaces by dynamic film drainage measurement. Langmuir 2018;34:12025-35.

75. Liu S, Xie L, Liu G, Zhong H, Wang Y, Zeng H. Hetero-difunctional reagent with superior flotation performance to chalcopyrite and the associated surface interaction mechanism. Langmuir 2019;35:4353-63.

76. Contreras-Naranjo JC, Ugaz VM. A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces. Nat Commun 2013;4:1919.

77. Kor M, Korczyk PM, Addai-Mensah J, Krasowska M, Beattie DA. Carboxymethylcellulose adsorption on molybdenite: the effect of electrolyte composition on adsorption, bubble-surface collisions, and flotation. Langmuir 2014;30:11975-84.

78. Filippov L, Javor Z, Piriou P, Filippova I. Salt effect on gas dispersion in flotation column - bubble size as a function of turbulent intensity. Miner Eng 2018;127:6-14.

79. Tabor RF, Chan DYC, Grieser F, Dagastine RR. Anomalous stability of carbon dioxide in pH-controlled bubble coalescence. Angew Chem Int Ed Engl 2011;50:3454-6.

80. Cui X, Shi C, Zhang S, et al. Probing the effect of salinity and ph on surface interactions between air bubbles and hydrophobic solids: implications for colloidal assembly at air/water interfaces. Chem Asian J 2017;12:1568-77.

81. Vakarelski IU, Manica R, Tang X, et al. Dynamic interactions between microbubbles in water. Proc Natl Acad Sci U S A 2010;107:11177-82.

82. Kirkpatrick R, Lockett M. The influence of approach velocity on bubble coalescence. Chem Eng Sci 1974;29:2363-73.

83. Yang W, Luo Z, Lai Q, Zou Z. Study on bubble coalescence and bouncing behaviors upon off-center collision in quiescent water. Exp Therm Fluid Sci 2019;104:199-208.

84. Zhang L, Shi C, Lu Q, Liu Q, Zeng H. Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: implications on stability of water-in-oil emulsions. Langmuir 2016;32:4886-95.

85. Vakarelski IU, Yang F, Thoroddsen ST. Free-rising bubbles bounce more strongly from mobile than from immobile water-air interfaces. Langmuir 2020;36:5908-18.

86. Vakarelski IU, Yang F, Tian YS, Li EQ, Chan DYC, Thoroddsen ST. Mobile-surface bubbles and droplets coalesce faster but bounce stronger. Sci Adv 2019;5:eaaw4292.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/