REFERENCES

1. Alvarez LW, Anderson JA, Bedwei FE, et al. Search for hidden chambers in the pyramids: the structure of the Second Pyramid of Giza is determined by cosmic-ray absorption. Science 1970;167:832-9.

2. Spence K. Ancient Egyptian chronology and the astronomical orientation of pyramids. Nature 2000;408:320-4.

3. Demortier G. PIXE, PIGE and NMR study of the masonry of the pyramid of Cheops at Giza. Nucl Instrum Methods Phys Res B 2004;226:98-109.

4. Delaine J. Structural experimentation: the lintel arch, corbel and tie in western Roman architecture. World Archaeol 1990;21:407-24.

5. Chu GC, Ju Y. The Great Wall in ruins: communication and cultural change in China. Albany, NY, USA: State University of New York Press; 1993. Available from: https://www.eastwestcenter.org/publications/great-wall-ruins-communication-and-cultural-change-china. [Last accessed on 29 Jan 2024].

6. Veiga R. Air lime mortars: what else do we need to know to apply them in conservation and rehabilitation interventions? A review. Constr Build Mater 2017;157:132-40.

7. Boynton RS. Chemistry and technology of lime and limestone, 2nd edition. New York: Wiley; 1980. Available from: https://www.wiley.com/en-us/Chemistry+and+Technology+of+Lime+and+Limestone%2C+2nd+Edition-p-9780471027713. [Last accessed on 29 Jan 2024].

8. Riccardi MP, Duminuco P, Tomasi C, Ferloni P. Thermal, microscopic and X-ray diffraction studies on some ancient mortars. Thermochim Acta 1998;321:207-14.

9. Richardson L Jr. A new topographical dictionary of Ancient Rome. Baltimore: Johns Hopkins University Press; 1992. Available from: https://www.press.jhu.edu/books/title/1037/new-topographical-dictionary-ancient-rome. [Last accessed on 29 Jan 2024].

10. Moropoulou A, Bakolas A, Anagnostopoulou S. Composite materials in ancient structures. Cem Concr Compos 2005;27:295-300.

11. Song Y. Pan J, editor. Tian Gong Kai Wu Yi Zhu. Shanghai: Shanghai Classics Publishing House; 2008. (in Chinese) Available from: https://book.douban.com/subject/3156435/. [Last accessed on 29 Jan 2024].

12. Fang S, Zhang H, Zhang B, Wei G, Li G, Zhou Y. A study of the Chinese organic-inorganic hybrid sealing material used in “Huaguang No.1” ancient wooden ship. Thermochim Acta 2013;551:20-6.

13. Xiao Y, Fu X, Gu H, Gao F, Liu S. Properties, characterization, and decay of sticky rice-lime mortars from the Wugang Ming dynasty city wall (China). Mater Charact 2014;90:164-72.

14. Zeng Y, Zhang B, Liang X. A case study and mechanism investigation of typical mortars used on ancient architecture in China. Thermochim Acta 2008;473:1-6.

15. Zheng Y, Zhang H, Zhang BJ, Yue LH. A new method in detecting the sticky rice component in traditional Chinese tabia. Archaeometry 2016;58:218-29.

16. Liu H, Peng C, Dai M, Gu Q, Song S. Influence of sticky rice and anionic polyacrylamide on the crystallization of calcium carbonate in chinese organic sanhetu. Surf Rev Lett 2015;22:1550073.

17. Simoni M, Wilkes MD, Brown S, Provis JL, Kinoshita H, Hanein T. Decarbonising the lime industry: state-of-the-art. Renew Sust Energy Rev 2022;168:112765.

18. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1997. Available from: https://www.icevirtuallibrary.com/doi/pdf/10.1680/cc.25929.fm. [Last accessed on 29 Jan 2024].

19. Ventolà L, Vendrell M, Giraldez P, Merino L. Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics. Constr Build Mater 2011;25:3313-8.

20. do Rosário Veiga M, Fragata A, Tavares ML, Magalhães AC, Ferreira N. Inglesinhos convent: compatible renders and other measures to mitigate water capillary rising problems. J Build Apprais 2009;5:171-85.

21. do Rosário Veiga M, Santos Silva A. 6 - Mortars. In: Long-term performance and durability of masonry structures. Elsevier; 2019. pp. 169-208.

22. Zhang D, Zhao J, Wang D, Xu C, Zhai M, Ma X. Comparative study on the properties of three hydraulic lime mortar systems: natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar. Constr Build Mater 2018;186:42-52.

23. Pavlík Z, Benešová H, Matiašovský P, Pavlíková M. Study on carbonation process of several types of advanced lime-based plasters. 2012. Available from: https://zenodo.org/records/1055934. [Last accessed on 29 Jan 2024]

24. Cultrone G, Sebastián E, Huertas MO. Forced and natural carbonation of lime-based mortars with and without additives: mineralogical and textural changes. Cem Concr Res 2005;35:2278-89.

25. Cizer Ö, Van Balen K, Elsen J, Van Gemert D. Real-time investigation of reaction rate and mineral phase modifications of lime carbonation. Constr Build Mater 2012;35:741-51.

26. Garijo L, Zhang X, Ruiz G, Ortega JJ, Yu RC. Advanced mechanical characterization of NHL mortars and cohesive simulation of their failure behavior. Constr Build Mater 2017;153:569-77.

27. Garijo L, Zhang X, Ruiz G, Ortega JJ, Wu Z. The effects of dosage and production process on the mechanical and physical properties of natural hydraulic lime mortars. Constr Build Mater 2018;169:325-34.

28. Winnefeld F, Böttger KG. How clayey fines in aggregates influence the properties of lime mortars. Mater Struct 2007;39:433-43.

29. Lawrence R, Walker P. The impact of the water/lime ratio on the structural characteristics of air lime mortars. 2008. Available from: https://www.semanticscholar.org/paper/The-impact-of-the-water-lime-ratio-on-the-of-air-Lawrence-Walker/b5f3a029f69a3c4a762e3f113e6aafb25c121d09. [Last accessed on 30 Jan 2024].

30. Kalagri A, Karatasios I, Kilikoglou V. The effect of aggregate size and type of binder on microstructure and mechanical properties of NHL mortars. Constr Build Mater 2014;53:467-74.

31. Torres I, Matias G, Faria P. Natural hydraulic lime mortars - the effect of ceramic residues on physical and mechanical behaviour. J Build Eng 2020;32:101747.

32. Ontiveros-Ortega E, Rodríguez-García R, González-Serrano A, Molina L. Evolution of mechanical properties in aerial lime mortars of traditional manufacturing, the relationship between putty and powder lime. Constr Build Mater 2018;191:575-89.

33. Sağın EU, Duran HE, Böke H. Lime mortar technology in ancient eastern Roman provinces. J Archaeol Sci Rep 2021;39:103132.

34. Lanas J, Alvarez-Galindo JI. Masonry repair lime-based mortars: factors affecting the mechanical behavior. Cem Concr Res 2003;33:1867-76.

35. Degryse P, Elsen J, Waelkens M. Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem Concr Res 2002;32:1457-63.

36. Naciri K, Aalil I, Chaaba A. Eco-friendly gypsum-lime mortar with the incorporation of recycled waste brick. Constr Build Mater 2022;325:126770.

37. Lam MNT, Nguyen DT, Nguyen DL. Potential use of clay brick waste powder and ceramic waste aggregate in mortar. Constr Build Mater 2021;313:125516.

38. Stefanidou M, Papayianni I. The role of aggregates on the structure and properties of lime mortars. Cem Concr Compos 2005;27:914-9.

39. Saeli M, Senff L, Tobaldi DM, Seabra MP, Labrincha JA. Novel biomass fly ash-based geopolymeric mortars using lime slaker grits as aggregate for applications in construction: Influence of granulometry and binder/aggregate ratio. Constr Build Mater 2019;227:116643.

40. Cazalla O, Rodriguez-navarro C, Sebastian E, Cultrone G, De la Torre MJ. Aging of lime putty: effects on traditional lime mortar carbonation. J Am Ceram Soc 2000;83:1070-6.

41. Gameiro A, Santos Silva A, Faria P, et al. Physical and chemical assessment of lime-metakaolin mortars: influence of binder:aggregate ratio. Cem Concr Compos 2014;45:264-71.

42. Bakolas A, Bertoncello R, Biscontin G, et al. Chemico-physical interactions among the constituents of historical walls in Venice. MRS Proc 1995;352:771-7.

43. Vyšvařil M, Žižlavský T, Bayer P. Foam glass dust as a supplementary material in lime mortars. J Mater Civ Eng 2021;33:04021026.

44. Pavía S, Caro S. An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Constr Build Mater 2008;22:1807-11.

45. Xing Z, Hébert R, Beaucour AL, Ledésert B, Noumowé A. Influence of chemical and mineralogical composition of concrete aggregates on their behaviour at elevated temperature. Mater Struct 2014;47:1921-40.

46. Aggelakopoulou E, Bakolas A, Moropoulou A. Properties of lime-metakolin mortars for the restoration of historic masonries. Appl Clay Sci 2011;53:15-9.

47. Sabir BB, Wild S, Bai J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 2001;23:441-54.

48. Cabrera J, Rojas MF. Mechanism of hydration of the metakaolin-lime-water system. Cem Concr Res 2001;31:177-82.

49. Pavlík V, Užáková M. Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars. Constr Build Mater 2016;102:14-25.

50. Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 2009;43:392-400.

51. Liu H, Wang W, Zhao Y, Song S. Performance evaluation of lime mortars with metakaolin and CMC for restoration application. J Mater Civ Eng 2020;32:04020293.

52. Vejmelková E, Keppert M, Keršner Z, Rovnaníková P, Černý R. Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings. Constr Build Mater 2012;31:22-8.

53. Frı́as M, Cabrera J. Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 °C. Cem Concr Res 2001;31:519-27.

54. Andrejkovičová S, Alves C, Velosa A, Rocha F. Bentonite as a natural additive for lime and lime-metakaolin mortars used for restoration of adobe buildings. Cem Concr Compos 2015;60:99-110.

55. Andrejkovičová S, Velosa AL, Rocha F. Air lime-metakaolin-sepiolite mortars for earth based walls. Constr Build Mater 2013;44:133-41.

56. Sepulcre-Aguilar A, Hernández-Olivares F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem Concr Res 2010;40:66-76.

57. Wild S, Khatib JM, Roose LJ. Chemical shrinkage and autogenous shrinkage of Portland cement - metakaolin pastes. Adv Cem Res 1998;10:109-19.

58. Rojas MF, Cabrera J. The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime-water systems. Cem Concr Res 2002;32:133-8.

59. Morsy M. Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system. 2005. Available from: https://www.semanticscholar.org/paper/Effect-of-temperature-on-hydration-kinetics-and-of-Morsy/c1c44e864dc29ab12b0532879bd0a81899aa1703. [Last accessed on 29 Jan 2024].

60. Fortes-Revilla C, Martínez-Ramírez S, Blanco-Varela MT. Modelling of slaked lime-metakaolin mortar engineering characteristics in terms of process variables. Cem Concr Compos 2006;28:458-67.

61. Degloorkar NK, Pancharathi RK. Use of particle packing methods for development of lime fly ash-based mortars for repair of heritage structures. Mater Today Proc 2022;61:123-31.

62. Xu S, Ma Q, Wang J. Combined effect of isobutyltriethoxysilane and silica fume on the performance of natural hydraulic lime-based mortars. Constr Build Mater 2018;162:181-91.

63. Fang SQ, Zhang H, Zhang BJ, Zheng Y. The identification of organic additives in traditional lime mortar. J Cult Herit 2014;15:144-50.

64. Ayasgil D, Ince C, Derogar S, Ball RJ. The long-term engineering properties and sustainability indices of dewatering hydrated lime mortars through Jacaranda seed pods. Sustain Mater Technol 2022;32:e00435.

65. Shanmugavel D, Kumaryadav P, Khadimallah MA, Ramadoss R. Experimental analysis on the performance of egg albumen as a sustainable bio admixture in natural hydraulic lime mortars. J Clean Prod 2021;320:128736.

66. Jiang H, Dian W, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 2003;63:53-9.

67. Koch K, Andersson R, Åman P. Quantitative analysis of amylopectin unit chains by means of high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr A 1998;800:199-206.

68. Nutting GC. Effect of electrolytes on the viscosity of potato starch pastes. J Colloid Sci 1952;7:128-39.

69. González-Gutiérrez J, Partal P, García-Morales M, Gallegos C. Effect of processing on the viscoelastic, tensile and optical properties of albumen/starch-based bioplastics. Carbohydr Polym 2011;84:308-15.

70. Żołek-Tryznowska Z, Holica J. Starch films as an environmentally friendly packaging material: printing performance. J Clean Prod 2020;276:124265.

71. Nordin AH, Ngadi N, Ilyas AR, Nabgan W, Norfarhana AS. Starch-based plastics: a bibliometric analysis. Mater Today Proc 2023;74:519-23.

72. Xing Z, Zhu L, Wu Y, et al. Effect of nano-TiO2 particle size on the bonding performance and film-forming properties of starch-based wood adhesives. Int J Biol Macromol 2023;235:123697.

73. Beaudoin JJ, Dramé H, Raki L, Alizadeh R. Formation and properties of C-S-H-PEG nano-structures. Mater Struct 2009;42:1003-14.

74. Richardson IG. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 2004;34:1733-77.

75. Popova A, Geoffroy G, Renou-Gonnord MF, Faucon P, Gartner E. Interactions between polymeric dispersants and calcium silicate hydrates. J Am Ceram Soc 2000;83:2556-60.

76. Tang X, Alavi S, Herald TJ. Effects of plasticizers on the structure and properties of starch-clay nanocomposite films. Carbohydr Polym 2008;74:552-8.

77. Cölfen H. Precipitation of carbonates: recent progress in controlled production of complex shapes. Curr Opin Colloid Interface Sci 2003;8:23-31.

78. Gopi S, Subramanian VK, Palanisamy K. Aragonite-calcite-vaterite: a temperature influenced sequential polymorphic transformation of CaCO3 in the presence of DTPA. Mater Res Bull 2013;48:1906-12.

79. Sarkar A, Mahapatra S. Synthesis of all crystalline phases of anhydrous calcium carbonate. Cryst Growth Des 2010;10:2129-35.

80. Yang F, Zhang B, Ma Q. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction. Acc Chem Res 2010;43:936-44.

81. Kitamura M. Controlling factor of polymorphism in crystallization process. J Cryst Growth 2002;237-9:2205-14.

82. Kontrec J, Kralj D, Brečević L, Falini G. Influence of some polysaccharides on the production of calcium carbonate filler particles. J Cryst Growth 2008;310:4554-60.

83. Liu Y, Cui Y, Mao H, Guo R. Calcium carbonate crystallization in the presence of casein. Cryst Growth Des 2012;12:4720-6.

84. Dheilly RM, Tudo J, Sebaı̈bi Y, Quéneudec M. Influence of storage conditions on the carbonation of powdered Ca(OH)2. Constr Build Mater 2002;16:155-61.

85. Rigopoulos I, Kyriakou L, Vasiliades MA, Kyratsi T, Efstathiou AM, Ioannou I. Improving the carbonation of air lime mortars at ambient conditions via the incorporation of ball-milled quarry waste. Constr Build Mater 2021;301:124073.

86. Ergenç D, Fort R. Accelerating carbonation in lime-based mortar in high CO2 environments. Constr Build Mater 2018;188:314-25.

87. Oliveira MA, Azenha M, Lourenço PB, et al. Experimental analysis of the carbonation and humidity diffusion processes in aerial lime mortar. Constr Build Mater 2017;148:38-48.

88. Kitano Y. A study of the polymorphic formation of calcium carbonate in thermal springs with an emphasis on the effect of temperature. Bull Chem Soc Jpn 1962;35:1980-5.

89. Carmona-Carmona M, Acedo-Fuentes P, Romero-Casado A, Meneses-Rodríguez J, Trujillo-Gómez M, Tejado-Ramos JJ. Chitosan as a carbonation catalyst in lime mortars. Results Eng 2023;17:100912.

90. Saghavaz KM, Resalati H, Mehrabi E. Characterization of cellulose-PCC composite filler synthesized from CMC and BSKP fibrils by hydrolysis of ammonium carbonate. Powder Technol 2013;246:93-7.

91. Zhang Z, Liu J, Li B, Yu G, Li L. Experimental study on factors affecting the physical and mechanical properties of shell lime mortar. Constr Build Mater 2019;228:116726.

92. Yang L, Zhang X, Liao Z, Guo Y, Hu Z, Cao Y. Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization. J Inorg Biochem 2003;97:377-83.

93. Shi YC, Capitani T, Trzasko P, Jeffcoat R. Molecular structure of a low-amylopectin starch and other high-amylose maize starches. J Cereal Sci 1998;27:289-99.

94. Zheng L, Hu Y, Ma Y, et al. Egg-white-mediated crystallization of calcium carbonate. J Cryst Growth 2012;361:217-24.

95. Wang X, Li X, Wang W. Experimental study on the rheological properties of starch gels of buckwheat, corn and potato. 2006. Available from: http://www.tcsae.org/en/article/id/20061246. [Last accessed on 29 Jan 2024].

96. Liu H, Zhao Y, Peng C, Song S, López-Valdivieso A. Lime mortars - the role of carboxymethyl cellulose on the crystallization of calcium carbonate. Constr Build Mater 2018;168:169-77.

97. Dhami NK, Reddy MS, Mukherjee A. Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 2013;4:314.

98. Weiner S, Hood L. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 1975;190:987-9.

99. Weiner S, Traub W. Macromolecules in mollusc shells and their functions in biomineralization. Phil Trans R Soc Lond B 1984;304:425-34.

100. Hammes F, Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 2002;1:3-7.

101. Morse JW. Chapter 7. The kinetics of calcium carbonate dissolution and precipitation. In: Reeder RJ, editor. Carbonates. De Gruyter; 1983. pp. 227-64. Available from: https://www.degruyter.com/document/doi/10.1515/9781501508134-011/html. [Last accessed on 29 Jan 2024].

102. Yu SH. Bio-inspired crystal growth by synthetic templates. In: Naka K, editor. Biomineralization II. Topics in current chemistry. Berlin, Heidelberg: Springer; 2007. pp. 79-118.

103. Adair JH, Suvaci E. Morphological control of particles. Curr Opin Colloid Interface Sci 2000;5:160-7.

104. Siegfried MJ, Choi KS. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv Mater 2004;16:1743-6.

105. Feijoo J, Alvarez-Feijoo MA, Fort R, Arce E, Ergenç D. Effects of paraffin additives, as phase change materials, on the behavior of a traditional lime mortar. Constr Build Mater 2022;361:129734.

106. Dejong JT, Fritzges MB, Nüsslein K. Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 2006;132:1381-92.

107. Ivanov V, Chu J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 2008;7:139-53.

108. Stocks-Fischer S, Galinat JK, Bang SS. Microbiological precipitation of CaCO3. Soil Biol Biochem 1999;31:1563-71.

109. Ergenç D, Feijoo J, Fort R, de Buergo MA. Effects of potassium ferrocyanide used for desalination on lime composite performances in different curing regimes. Constr Build Mater 2020;259:120409.

110. Feijoo J, Ergenç D, Fort R, de Buergo MÁ. Addition of ferrocyanide-based compounds to repairing joint lime mortars as a protective method for porous building materials against sodium chloride damage. Mater Struct 2021;54:14.

111. Ergenç D, Sierra-Fernandez A, de Mar Barbero-Barrera M, Gomez-Villalba LS, Fort R. Assessment on the performances of air lime-ceramic mortars with nano-Ca(OH)2 and nano-SiO2 additions. Constr Build Mater 2020;232:117163.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/