REFERENCES

1. Elnabawy AO, Rangarajan S, Mavrikakis M. Computational chemistry for NH3 synthesis, hydrotreating, and NOx reduction: three topics of special interest to Haldor Topsøe. J Catal 2015;328:26-35.

2. Global $9.5 billion refinery catalyst market to 2027 by materials (zeolitea, metallic, chemical compounds), & application (FCC, alkylation, hydrotreating, hydrocracking). Available from: https://www.globenewswire.com/fr/news-release/2021/02/16/2175904/28124/en/Global-9-5-Billion-Refinery-Catalyst-Market-to-2027-by-Material-Zeolites-Metallic-Chemical-Compounds-Application-FCC-Alkylation-Hydrotreating-Hydrocracking.html. [Last accessed on 25 Oct 2023].

3. Afanasiev P, Cattenot M, Geantet C, Matsubayashi N, Sato K, Shimada S. (Ni)W/ZrO2 hydrotreating catalysts prepared in molten salts. Appl Catal A Gen 2002;237:227-37.

4. Hirschon AS, Wilson RB, Laine RM. Ruthenium promoted hydrodenitrogenation catalysts. Appl Catal 1987;34:311-6.

5. Addressing sustainability challenges with earth abundant metal catalysis. Available from: https://www.acs.org/acs-webinars/library/abundant-metal-catalysis.html#. [Last accessed on 25 Oct 2023].

6. Sakata Y, Hamrinjr C. Catalytic activity of mineral matter from western Kentucky coals for hydro-desulphurization and hydrodenitrogenation. Fuel 1983;62:508-17.

7. Mochida I, Choi K. An overview of hydrodesulfurization and hydrodenitrogenation. J Jpn Petrol Inst 2004;47:145-63.

8. Peeters E, Geantet C, Zotin JL, Breysse M, Vrinat M. Deep hydrodenitrogenation on Pt supported catalysts in the presence of H2S, comparison with NiMo sulfide catalyst. Stud Surf Sci Catal 2000;130:2837-42.

9. Robinson PR. 10 - Hydroconversion processes and technology for clean fuel and chemical production. In: Advances in clean hydrocarbon fuel processing. Woodhead Publishing; 2011. p. 287-325.

10. Nagai M, Masunaga T, Hana-oka N. Selectivity of molybdenum catalyst in hydrodenitrogenation, hydrodesulfurization and hydrodeoxygenation: effects of sulfur and oxygen compounds on acridine hydrodenitrogenation. J Catal 1986;101:284-92.

11. Katzer JR, Sivasubramanian R. Process and catalyst needs for hydrodenitrogenation. Catal Rev 1979;20:155-208.

12. Peeters E, Zotin JL, Geantet C, Breysse M, Vrinat M. Hydrodenitrogenation properties of supported metal catalysts in the presence of H2S. Stud Surf Sci Catal 1999;127:227-34.

13. Oyama ST, Gott T, Zhao H, Lee YK. Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 2009;143:94-107.

14. Ho TC. Hydrodenitrogenation catalysis. Catal Rev 1988;30:117-60.

15. Lewandowski M, Da Costa P, Benichou D, Sayag C. Catalytic performance of platinum doped tungsten carbide in simultaneous hydrodenitrogenation and hydrodesulphurization. Appl Catal B Environ 2010;93:241-9.

16. Yin L, Ma J, Ling L, et al. Insight into the hydrodenitrogenation mechanism of quinoline on the MoP(010) surface with and without the effect of sulfur. Mol Catal 2023;538:112970.

17. Farag H. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: kinetic modeling approach for estimating selectivity. J Colloid Interface Sci 2010;348:219-26.

18. Rabarihoela-rakotovao V, Diehl F, Brunet S. Deep HDS of diesel fuel: inhibiting effect of nitrogen compounds on the transformation of the refractory 4,6-dimethyldibenzothiophene over a NiMoP/Al2O3 catalyst. Catal Lett 2009;129:50-60.

19. Jiang H, Sun X, Lv hailong, et al. Hydrodenitrogenation kinetics of diesel oil and catalyst stacking simulation. Energy Fuels 2021;35:3283-94.

20. Reyes JC, Avalos-borja M, Cordero RL, Agudo AL. Influence of phosphorus on the structure and the hydrodesulphurization and hydrodenitrogenation activity of W/Al2O3 catalysts. Appl Catal A Gen 1994;120:147-62.

21. Fang M, Tang W, Yu C, et al. Performance of Ni-rich bimetallic phosphides on simultaneous quinoline hydrodenitrogenation and dibenzothiophene hydrodesulfurization. Fuel Process Technol 2015;129:236-44.

22. Sudhakar C, Sandford G, Dolfinger F. Method for selective hydrodenitrogenation of raw oils. Available from: https://patentimages.storage.googleapis.com/a6/56/a1/1933ab301c78f1/US5389241.pdf. [Last accessed on 25 Oct 2023].

23. Oyama ST. Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 2003;216:343-52.

24. Ma Z, Wei L, Zhou W, et al. Overview of catalyst application in petroleum refinery for biomass catalytic pyrolysis and bio-oil upgrading. RSC Adv 2015;5:88287-97.

25. Dembaremba TO, Majodina S, Walmsley RS, Ogunlaja AS, Tshentu ZR. Perspectives on strategies for improving ultra-deep desulfurization of liquid fuels through hydrotreatment: catalyst improvement and feedstock pre-treatment. Front Chem 2022;10:807225.

26. Pecoraro TA, Chianelli RR. Hydrodesulfurization catalysis by transition metal sulfides. J Catal 1981;67:430-45.

27. Eijsbouts S, de Beer VHJ, Prins R. Periodic trends in the hydrodenitrogenation activity of carbon-supported transition metal sulfide catalysts. J Catal 1988;109:217-20.

28. Eijsbouts S, De Beer VHJ, Prins R. Hydrodenitrogenation of quinoline over carbon-supported transition metal sulfides. J Catal 1991;127:619-30.

29. Eijsbouts S, Sudhakar C, De Beer VHJ, Prins R. Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-propylaniline over carbon-supported transition metal sulfide catalysts. J Catal 1991;127:605-18.

30. Raje AP, Liaw SJ, Srinivasan R, Davis BH. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha I. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen. Appl Catal A Gen 1997;150:297-318.

31. Delmon B. New technical challenges and recent advances in hydrotreatment catalysis. A critical updating review. Catal Lett 1993;22:1-32.

32. Kazakova MA, Vatutina YV, Selyutin AG, et al. Design of improved CoMo hydrotreating catalyst via engineering of carbon nanotubes@alumina composite support. Appl Catal B Environ 2023;328:122475.

33. Hu D, Li H, Mei J, et al. The effect of chelating agent on hydrodesulfurization reaction of ordered mesoporous alumina supported NiMo catalysts. Pet Sci 2022;19:321-8.

34. Huang W, Zhou Y, Wei Q, et al. Synthesis of mesoporous TiO2-Al2O3 composites supported Niw hydrotreating catalysts and their superior catalytic performance 3 for heavy oil hydrodenitrogenation. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4004949. [Last accessed on 25 Oct 2023].

35. Stolyarova EA, Danilevich VV, Klimov OV, et al. Comparison of alumina supports and catalytic activity of CoMoP/γ-Al2O3 hydrotreating catalysts obtained using flash calcination of gibbsite and precipitation method. Catal Today 2020;353:88-98.

36. Liu X, Liu J, Li L, et al. Hydrodesulfurization of dibenzothiophene on TiO2-x-modified Fe-based catalysts: electron transfer behavior between TiO2-x and Fe species. ACS Catal 2020;10:9019-33.

37. Wei W, Zhang X, Liu X, et al. Tuning effect of the zeolite brønsted acidity on the FeZn bimetallic hydrodesulfurization catalyst. Energy Fuels 2022;36:527-38.

38. Cui T, Rajendran A, Fan H, Feng J, Li W. Review on hydrodesulfurization over zeolite-based catalysts. Ind Eng Chem Res 2021;60:3295-323.

39. Aghamohammadi S, Haghighi M, Maleki M, Rahemi N. Sequential impregnation vs. sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: effect of synthesis method and support promotion. Mol Catal 2017;431:39-48.

40. Li T, Tao Z, Hu C, et al. Brønsted acidity of amorphous silica-aluminas for hydrocracking of Fischer-Tropsch wax into diesel fractions. Appl Catal A Gen 2022;630:118439.

41. Shi G, Fang D, Shen J. Hydroisomerization of model FCC naphtha over sulfided Co(Ni)-Mo(W)/MCM-41 catalysts. Microporous Mesoporous Mater 2009;120:339-45.

42. Cao Z, Zhang X, Guo R, et al. Synergistic effect of acidity and active phases for NiMo catalysts on dibenzothiophene hydrodesulfurization performance. Chem Eng J 2020;400:125886.

43. Zhou W, Yang L, Liu L, et al. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrodesulfurization. Appl Catal B Environ 2020;268:118428.

44. Zhang P, Mu F, Zhou Y, et al. Synthesis of highly ordered TiO2-Al2O3 and catalytic performance of its supported NiMo for HDS of 4, 6-dimethyldibenzothiophene. Catal Today 2023;423:112716.

45. Chen J, Xia B, Zheng M, et al. Hydrotreatment of FCC gasoline catalyzed by CoMo bifunctional catalysts: the effects of acidity on catalytic performance. Ind Eng Chem Res 2021;60:173-84.

46. Kazakova MA, Vatutina YV, Prosvirin IP, et al. Boosting hydrodesulfurization activity of CoMo/Al2O3 catalyst via selective graphitization of alumina surface. Microporous Mesoporous Mater 2021;317:111008.

47. Zhang G, Yang F, Xu Z, et al. Electronic structure regulation of CoMoS catalysts by N, P co-doped carbon modification for effective hydrodesulfurization. Fuel 2022;322:124160.

48. Saleh TA, Sulaiman KO, Al-hammadi SA. Effect of carbon on the hydrodesulfurization activity of MoCo catalysts supported on zeolite/ active carbon hybrid supports. Appl Catal B Environ 2020;263:117661.

49. Kohli K, Prajapati R, Maity SK, Sharma BK. Effect of silica, activated carbon, and alumina supports on NiMo catalysts for residue upgrading. Energies 2020;13:4967.

50. Huirache-acuña R, Pérez-ayala E, Cervantes-gaxiola M, et al. Dibenzothiophene hydrodesulfurization over ternary metallic NiMoW/Ti-HMS mesoporous catalysts. Catal Commun 2021;148:106162.

51. Roy T, Rousseau J, Daudin A, et al. Deep hydrodesulfurization of 4,6-dimethydibenzothiophene over CoMoS/TiO2 catalysts: impact of the TiO2 treatment. Catal Today 2021;377:17-25.

52. Yerga RM, Pawelec B, Mota N, Huirache-Acuña R. Hydrodesulfurization of dibenzothiophene over Ni-Mo-W sulfide catalysts supported on sol-gel Al2O3-CeO2. Materials 2022;15:6780.

53. Duan P, Savage PE. Catalytic hydrothermal hydrodenitrogenation of pyridine. Appl Catal B Environ 2011;108-9:54-60.

54. Guo Y, Liu X, Duan P, Xu D, Luque R. Catalytic hydrodenitrogenation of pyridine under hydrothermal conditions: a comprehensive study. ACS Sustain Chem Eng 2021;9:362-74.

55. Fisk CA, Morgan T, Ji Y, Crocker M, Crofcheck C, Lewis SA. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. Appl Catal A Gen 2009;358:150-6.

56. Ambursa MM, Birnin-Yauri AU, Yahya Y, Wawata IG, Yusuf AB. A review on required catalysts composition and its effective preparation method for hydrodeoxygenation of bio-oil. Equity J Sci Technol 2020;7:136-43. Available from: https://www.ajol.info/index.php/equijost/article/view/214425. [Last accessed on 25 Oct 2023]

57. Lebeau B, Bonne M, Comparot JD, et al. HDS of 4,6-dimethyldibenzothiophene over CoMoS supported mesoporous SiO2-TiO2 materials. Catal Today 2020;357:675-83.

58. Liu C, Mei J, Wang G, et al. Tailoring NiMoS active phases with high hydrodesulfurization activity through facilely synthesized supports with tunable mesostructure and morphology. J Catal 2020;387:170-85.

59. Romero DE, Rigutto M, Hensen EJM. Influence of the size, order and topology of mesopores in bifunctional Pd-containing acidic SBA-15 and M41S catalysts for n-hexadecane hydrocracking. Fuel Process Technol 2022;232:107259.

60. Keivanimehr F, Habibzadeh S, Mokhtarian M. Enhanced product quality through hydrodesulfurization of pyrolysis gasoline over a mixed metal oxide catalyst: an experimental and DFT study. Fuel 2022;317:123458.

61. Zhou W, Liu M, Zhang Q, Wei Q, Ding S, Zhou Y. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. ACS Catal 2017;7:7665-79.

62. Acosta-silva YJ, Toledano-ayala M, Torres-delgado G, et al. Nanostructured CeO2 thin films prepared by the sol-gel dip-coating method with anomalous behavior of crystallite size and bandgap. J Nanomater 2019;2019:1-8.

63. Liu X, Liu J, Li L, et al. Preparation of electron-rich Fe-based catalyst via electronic structure regulation and its promotion to hydrodesulfurization of dibenzothiophene. Appl Catal B Environ 2020;269:118779.

64. Ramírez-lópez R, Elizalde I, Rodríguez-méndez EE, Mera-luna S, Flores-vela AI. Al2O3-CeO2 sol-gel synthesis and addition of Rh to improve the oxygen mobility of mixed support. J Sol-Gel Sci Technol 2017;81:214-9.

65. Tai L, Hamidi R, de Caprariis B, et al. Guaiacol hydrotreating with in-situ generated hydrogen over ni/modified zeolite supports. Renew Energy 2022;182:647-58.

66. Zhou W, Zhou A, Zhang Y, et al. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts. J Catal 2019;374:345-59.

67. Ward JW. Hydrocracking processes and catalysts. Fuel Process Technol 1993;35:55-85.

68. Vela FJ, Palos R, García JR, et al. Enhancing the performance of a PtPd/HY catalyst for HDPE/VGO hydrocracking through zeolite desilication. Fuel 2022;329:125392.

69. Salam MA, Arora P, Ojagh H, Cheah YW, Olsson L, Creaser D. NiMoS on alumina-USY zeolites for hydrotreating lignin dimers: effect of support acidity and cleavage of C-C bonds. Sustain Energy Fuels 2020;4:149-63.

70. Jabłońska M, Król A, Kukulska-zając E, et al. Zeolites Y modified with palladium as effective catalysts for low-temperature methanol incineration. Appl Catal B Environ 2015;166-7:353-65.

71. Silva B, Figueiredo H, Soares O, et al. Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate. Appl Catal B Environ 2012;117-8:406-13.

72. Ma J, Kang Y, Ma N, Hao W, Wang Y, Li R. A high acid mesoporous USY zeolite prepared by alumination. Mater Sci Pol 2013;31:19-24.

73. Lin TJ, Meng X, Shi L. Ni-exchanged Y-zeolite: An efficient heterogeneous catalyst for acetylene hydrocarboxylation. Appl Catal A Gen 2014;485:163-71.

74. Agudelo JL, Hensen EJM, Giraldo SA, Hoyos LJ. Effect of USY zeolite chemical treatment with ammonium nitrate on its VGO hydrocracking performance. Energy Fuels 2016;30:616-25.

75. Zepeda TA, Pawelec B, Díaz de León JN, de los Reyes JA, Olivas A. Effect of gallium loading on the hydrodesulfurization activity of unsupported Ga2S3/WS2 catalysts. Appl Catal B Environ 2012;111-2:10-9.

76. Vitolo S, Seggiani M, Frediani P, Ambrosini G, Politi L. Catalytic upgrading of pyrolytic oils to fuel over different zeolites. Fuel 1999;78:1147-59.

77. Saab R, Polychronopoulou K, Anjum DH, et al. Effect of SiO2/Al2O3 ratio in Ni/Zeolite-Y and Ni-W/Zeolite-Y catalysts on hydrocracking of heptane. Mol Catal 2022;528:112484.

78. Mendes F, Teixeira da Silva V, Edral Pacheco M, de Rezende Pinho A, Assumpção Henriques C. Hydrotreating of fast pyrolysis oil: a comparison of carbons and carbon-covered alumina as supports for Ni2P. Fuel 2020;264:116764.

79. Kazakov M, Kazakova M, Vatutina Y, et al. Comparative study of MWCNT and alumina supported CоMо hydrotreating catalysts prepared with citric acid as chelating agent. Catal Today 2020;357:221-30.

80. Xu Z, Wang H, Kang H, et al. Effect of organic phosphorus addition on the state of active metal species and catalytic performance of NiW/Al2O3 hydrodesulfurization catalyst. Fuel 2023;340:127547.

81. Huang W, Wei Q, Zhou Y, et al. Hydrotreating of diesel fuel over in-situ nickel modified Y zeolite supported Ni-Mo-S catalyst. Catal Today 2023;407:135-45.

82. Ali I, Al-shafei EN, Al-arfaj AA, Saleh TA. Influence of titanium oxide on the performance of molybdenum catalysts loaded on zeolite toward hydrodesulfurization reactions. Microporous Mesoporous Mater 2020;303:110188.

83. Cao Z, Guo R, Du P, et al. Synthesis of highly ordered Al-Zr-SBA-16 composites and their application in dibenzothiophene hydrodesulfurization. Chem Eng Sci 2020;213:115415.

84. Zhang B, Seddon D. Hydroprocessing catalysts and processes: the challenges for biofuels production. In: Catalytic science series. Europe: World Scientific; 2018. p. 316.

85. Xia B, Cao L, Luo K, et al. Effects of the active phase of CoMo/γ-Al2O3 catalysts modified using cerium and phosphorus on the HDS performance for FCC gasoline. Energy Fuels 2019;33:4462-73.

86. He S, Huang T, Fan Y. Tetradecylamine-induced assembly of Mo and Al precursors to prepare efficient NiMoS/Al2O3 catalysts for ultradeep hydrodesulfurization. Appl Catal B Environ 2022;317:121801.

87. Rayo P, Torres-mancera P, Centeno G, Alonso F, Muñoz JAD, Ancheyta J. Effect of silicon incorporation method in the supports of NiMo catalysts for hydrotreating reactions. Fuel 2019;239:1293-303.

88. Wang G, Zhao Z, Zhou W, et al. Investigation on the mechanism of 4,6-dimenthyldibenzothiophehe over NiMoS catalyst supported on highly ordered TiO2-Al2O3 composites-role of the solvent evaporating temperature. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4069628. [Last accessed on 25 Oct 2023].

89. Danilova IG, Dik PP, Sorokina TP, et al. Effect of rare earths on acidity of high-silica ultrastable REY zeolites and catalytic performance of NiMo/REY+Al2O3 catalysts in vacuum gas oil hydrocracking. Microporous Mesoporous Mater 2022;329:111547.

90. Qu L. Support and fluorination effects in hydrodenitrogenation over Ni-Mo hydrotreating catalysts. Available from: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/146933/eth-25898-02.pdf. [Last accessed on 25 Oct 2023].

91. Yan P, Tao Z, Hao K, Wang Y, Yang Y, Li Y. Effect of impregnation methods on nickel-tungsten catalysts and its performance on hydrocracking Fischer-Tropsch wax. J Fuel Chem Technol 2013;41:691-7.

92. Nikulshina M, Kokliukhin A, Mozhaev A, Nikulshin P. CoMo/Al2O3 hydrotreating catalysts prepared from single Co2Mo10-heteropolyacid at extremely high metal loading. Catal Commun 2019;127:51-7.

93. Prins R. Catalytic hydrodenitrogenation. Adv Catal 2001;46:399-464.

94. Vázquez-garrido I, López-benítez A, Berhault G, Guevara-lara A. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. Fuel 2019;236:55-64.

95. Zhang L, Chen X, Chen Y, Li W, Yang K, Liang C. Non-metal doping Ni@C as highly efficient and stable hydrodesulfurization catalysts for clean liquid fuels. Mol Catal 2022;528:112440.

96. Zhang S, Nguyen L, Liang JX, et al. Catalysis on singly dispersed bimetallic sites. Nat Commun 2015;6:7938.

97. Topalian PJ, Carrillo BA, Cochran PM, Takemura MF, Bussell ME. Synthesis and hydrodesulfurization properties of silica-supported nickel-ruthenium phosphide catalysts. J Catal 2021;403:173-80.

98. Yue S, Xu D, Sheng Y, et al. One-step synthesis of mesoporous alumina-supported molybdenum carbide with enhanced activity for thiophene hydrodesulfurization. J Environ Cheml Eng 2021;9:105693.

99. Lin Z, Denny SR, Chen JG. Transition metal carbides and nitrides as catalysts for thermochemical reactions. J Catal 2021;404:929-42.

100. Shamanaev IV, Suvorova AO, Gerasimov EY, et al. SRGO hydrotreating over Ni-phosphide catalysts on granulated Al2O3. Catal Today 2021;378:24-32.

101. Cecilia J, Infantes-molina A, Rodríguez-castellón E, Jiménez-lópez A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. J Catal 2009;263:4-15.

102. Wang C, Li X, Liu Y, Wang A, Sheng Q, Zhang C. Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues. J Catal 2022;407:333-41.

103. Dai X, Cheng Y, Si M, et al. A non-noble metal supported catalyst with potential prospect for hydroisomerization of n-hexadecane: second metal incorporated NiMe/SAPO-11 catalyst with superior hydroisomerization performance. Fuel 2022;324:124517.

104. Weise CF, Falsig H, Moses PG, Helveg S, Brorson M, Hansen LP. Single-atom Pt promotion of industrial Co-Mo-S catalysts for ultra-deep hydrodesulfurization. J Catal 2021;403:74-86.

105. Majodina S, Tshentu ZR, Ogunlaja AS. Effect of adding chelating ligands on the catalytic performance of Rh-promoted MoS2 in the hydrodesulfurization of dibenzothiophene. Catalysts 2021;11:1398.

106. Dong C, Yin C, Wu T, Wu Z, Liu D, Liu C. Effect of β-zeolite nanoclusters on the acidity and hydrodesulfurization activity of an unsupported Ni Mo catalyst. Catal Commun 2019;119:164-9.

107. Li L, Wang M, Huang L, et al. Electron-donating-accepting behavior between nitrogen-doped carbon materials and Fe species and its promotion for DBT hydrodesulfurization. Appl Catal B Environ 2019;254:360-70.

108. Farag H, Kishida M, Al-megren H. Competitive hydrodesulfurization of dibenzothiophene and hydrodenitrogenation of quinoline over unsupported MoS2 catalyst. Appl Catal A General 2014;469:173-82.

109. Castillo-Villalón P, Ramírez J, Reyes-sosa A, et al. On the contribution of the cobalt sulfide phase to the global activity of industrial-type CoMo/Al2O3 catalysts in the HDS of DBT. Catal Today 2022;394-6:41-9.

110. Qi L, Zheng P, Zhao Z, Duan A, Xu C, Wang X. Insights into the intrinsic kinetics for efficient hydrodesulfurization of 4,6-dimethyldibenzothiophene over mesoporous CoMoS2/ZSM-5. J Catal 2022;408:279-93.

111. Chen Z, Liu Y, Chen J, et al. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hydrodesulfurization process. Chin J Chem Eng 2022;41:392-402.

112. Egorova M, Prins R. Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3. J Catal 2004;224:278-87.

113. Chowdari RK, Díaz de León JN, Fuentes-moyado S. Effect of sulfidation conditions on the unsupported flower-like bimetallic oxide microspheres for the hydrodesulfurization of dibenzothiophene. Catal Today 2022;394-6:13-24.

114. Rajendran A, Cui TY, Fan HX, Wang MY, Li WY. High-performance NiMoS hydrodesulfurization catalysts by one-pot hydrothermal synthesis using Ni(acac)2 for sulfur-free liquid fuels. Fuel Process Technol 2022;227:107101.

115. Kanda Y, Saito R, Ono T, et al. Enhancement of the hydrodesulfurization and C-S bond cleavage activities of rhodium phosphide catalysts by platinum addition. J Catal 2022;408:294-302.

116. Prado GHC, Rao Y, de Klerk A. Nitrogen removal from oil: a review. Energy Fuels 2017;31:14-36.

117. Prins R, Zhao Y, Sivasankar N, Kukula P. Mechanism of C-N bond breaking in hydrodenitrogenation. J Catal 2005;234:509-12.

118. Sinfelt JH. Chemistry of catalytic processes, by Bruce C. Gates, James R. Katzer, and G. C. A. Schuit. Mcgraw-Hill, 1979, 464 pp. $28.50. AIChE J 1979;25:734.

119. Bachrach M, Marks TJ, Notestein JM. Understanding the hydrodenitrogenation of heteroaromatics on a molecular level. ACS Catal 2016;6:1455-76.

120. Peeters E, Cattenot M, Geantet C, Breysse M, Zotin JL. Hydrodenitrogenation on Pt/silica-alumina catalysts in the presence of H2S: role of acidity. Catal Today 2008;133-5:299-304.

121. Albersberger S, Shi H, Wagenhofer M, Han J, Gutiérrez OY, Lercher JA. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation. J Catal 2019;380:332-42.

122. Joo H, Guin JA. Activity of noble metal-promoted hydroprocessing catalysts for pyridine HDN and naphthalene hydrogenation. Fuel Process Technol 1996;49:137-55.

123. Li S, Sung Lee J, Hyeon T, Suslick KS. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures. Appl Catal A Gen 1999;184:1-9.

124. Al-megren HA, Xiao T, Gonzalez-cortes SL, Al-khowaiter SH, Green ML. Comparison of bulk CoMo bimetallic carbide, oxide, nitride and sulfide catalysts for pyridine hydrodenitrogenation. J Mol Catal A Chem 2005;225:143-8.

125. Miga K, Stanczyk K, Sayag C, Brodzki D, Djéga-mariadassou G. Bifunctional behavior of bulk MoOxNyand nitrided supported NiMo catalyst in hydrodenitrogenation of indole. J Catal 1999;183:63-8.

126. Qiu Z, Wang Y, Li Z, Cao Y, Li Q. Hydrodenitrogenation of Quinoline with high selectivity to aromatics over α-MoC1-x. Mol Catal 2021;516:112002.

127. Zuzaniuk V, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J Catal 2003;219:85-96.

128. Wagner JL, Jones E, Sartbaeva A, et al. Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae. Dalton Trans 2018;47:1189-201.

129. Lewandowski M. Hydrotreating activity of bulk NiB alloy in model reaction of hydrodenitrogenation of carbazole. Appl Catal B Environ 2015;168-9:322-32.

130. Clark P, Dhandapani B, Oyama ST. Preparation and hydrodenitrogenation performance of rhenium nitride. Appl Catal A Gen ;184:175-80.

131. Choi JG, Brenner JR, Colling CW, Demczyk BG, Dunning JL, Thompson LT. Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts. Catal Today 1992;15:201-22.

132. Lee KS, Reimer JA, Bell AT. Investigations of hydrodenitrogenation of quinoline over molybdenum nitride. Stud Surf Sci Catal 1993;75:2197-200.

133. Delmon B, Grange P, Froment GF. Hydrotreatment and hydrocracking of oil fractions. Available from: https://shop.elsevier.com/books/hydrotreatment-and-hydrocracking-of-oil-fractions/delmon/978-0-444-82556-8. [Last accessed on 25 Oct 2023].

134. Ledesma BC, Martínez ML, Beltramone AR. Iridium-supported SBA-15 modified with Ga and Al as a highly active catalyst in the hydrodenitrogenation of quinoline. Catal Today 2020;349:178-90.

135. Escalona N, Vrinat M, Laurenti D, Gil Llambías F. Rhenium sulfide in hydrotreating. Appl Catal A Gen 2007;322:113-20.

136. Luchsinger M, Bozkurt B, Akgerman A, Janzen C, Addiego W, Darensbourg M. Direct synthesis of mixed metal sulfide catalysts and their hydrodenitrogenation activity. Appl Catal 1991;68:229-47.

137. Klimov OV, Nadeina KA, Vatutina YV, et al. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity. Catal Today 2018;307:73-83.

138. Nagai M, Goto Y, Irisawa A, Omi S. Catalytic activity and surface properties of nitrided molybdena-alumina for carbazole hydrodenitrogenation. J Catal 2000;191:128-37.

139. Szymańska A, Lewandowski M, Sayag C, Djéga-Mariadassou G. Kinetic study of the hydrodenitrogenation of carbazole overbulkmolybdenum carbide. J Catal 2003;218:24-31.

140. Szymańska-kolasa A, Lewandowski M, Sayag C, Brodzki D, Djéga-mariadassou G. Comparison between tungsten carbide and molybdenum carbide for the hydrodenitrogenation of carbazole. Catal Today 2007;119:35-8.

141. Bowker RH, Ilic B, Carrillo BA, Reynolds MA, Murray BD, Bussell ME. Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts. Appl Catal A Gen 2014;482:221-30.

142. Stinner C, Prins R, Weber T. Binary and ternary transition-metal phosphides as HDN catalysts. J Catal 2001;202:187-94.

143. de Souza Guedes Junior G, Gigante Nascimento I, Ahmad M, et al. Kinetics of simultaneous hydrodesulfurization and hydrodenitrogenation reactions using CoMoP/Al2O3 and NiMoP/Al2O3. Chem Eng Sci 2023;275:118725.

144. Wang J, Wang X, Yuan Y, Shuaib A, Shen J. Optimization of MgO/Al2O3 ratio for the maximization of active site densities in the Ni2P/MgAlO catalysts for the hydrotreating reactions. J Energy Chem 2016;25:571-6.

145. Sureshkumar K, Shanthi K, Sasirekha N, Jegan J, Sardhar Basha S. A study on catalytic activity of modified Ni-Re/Al-SBA-15 catalyst for hydrodenitrogenation of o-toluidine. Int J Hydrog Energy 2020;45:4328-40.

146. Cinibulk J, Vı́t Z. Selective Mo-Ir/Al2O3 sulfide catalysts for hydrodenitrogenation. Appl Catal A Gen 2000;204:107-16.

147. Wandas R, Surygala J, Śliwka E. Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars. Fuel 1996;75:687-94.

148. Leng S, Wang X, He X, et al. NiFe/γ-Al2O3: a universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds. Catal Commun 2013;41:34-7.

149. Zhang Z, Pei Z, Chen H, et al. Catalytic in-situ hydrogenation of furfural over bimetallic Cu-Ni alloy catalysts in isopropanol. Ind Eng Chem Res 2018;57:4225-30.

150. Xue H, Xu J, Gong X, Hu R. Performance of a Ni-Cu-Co/Al2O3 catalyst on in-situ hydrodeoxygenation of bio-derived phenol. Catalysts 2019;9:952.

151. Toba M, Abe Y, Kuramochi H, Osako M, Mochizuki T, Yoshimura Y. Hydrodeoxygenation of waste vegetable oil over sulfide catalysts. Catal Today 2011;164:533-7.

152. Massoth FE, Politzer P, Concha MC, Murray JS, Jakowski J, Simons J. Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties. J Phys Chem B 2006;110:14283-91.

153. Priecel P, Kubička D, Čapek L, Bastl Z, Ryšánek P. The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts. Appl Catal A Gen 2011;397:127-37.

154. Kubička D, Kaluža L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A Gen 2010;372:199-208.

155. Kimura T, Imai H, Li X, Sakashita K, Asaoka S, Al-khattaf SS. Hydroconversion of triglycerides to hydrocarbons over Mo-Ni/γ-Al2O3 catalyst under low hydrogen pressure. Catal Lett 2013;143:1175-81.

156. Hachemi I, Jeništová K, Mäki-arvela P, et al. Comparative study of sulfur-free nickel and palladium catalysts in hydrodeoxygenation of different fatty acid feedstocks for production of biofuels. Catal Sci Technol 2016;6:1476-87.

157. Popov A, Kondratieva E, Mariey L, et al. Bio-oil hydrodeoxygenation: adsorption of phenolic compounds on sulfided (Co)Mo catalysts. J Catal 2013;297:176-86.

158. Centeno A, Laurent E, Delmon B. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. J Catal 1995;154:288-98.

159. Şenol OI, Viljava TR, Krause AOI. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal Today 2005;100:331-5.

160. Tiwari R, Rana BS, Kumar R, et al. Hydrotreating and hydrocracking catalysts for processing of waste soya-oil and refinery-oil mixtures. Catal Commun 2011;12:559-62.

161. Li X, Luo X, Jin Y, et al. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renew Sustain Energy Rev 2018;82:3762-97.

162. Ardiyanti AR, Khromova SA, Venderbosch RH, Yakovlev VA, Heeres HJ. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support. Appl Catal B Environ 2012;117-8:105-17.

163. Horáček J, Tišler Z, Rubáš V, Kubička D. HDO catalysts for triglycerides conversion into pyrolysis and isomerization feedstock. Fuel 2014;121:57-64.

164. la Puente G, Gil A, Pis JJ, Grange P. Effects of support surface chemistry in hydrodeoxygenation reactions over CoMo/activated carbon sulfided catalysts. Langmuir 1999;15:5800-6.

165. Yang Y, Gilbert A, Xu C(C). Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: a model compound study using phenol. Appl Catal A Gen 2009;360:242-9.

166. Echeandia S, Arias P, Barrio V, Pawelec B, Fierro J. Synergy effect in the HDO of phenol over Ni-W catalysts supported on active carbon: effect of tungsten precursors. Appl Catal B Environ 2010;101:1-12.

167. Yoosuk B, Tumnantong D, Prasassarakich P. Amorphous unsupported Ni-Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation. Fuel 2012;91:246-52.

168. Zhang D, Ye F, Xue T, Guan Y, Wang YM. Transfer hydrogenation of phenol on supported Pd catalysts using formic acid as an alternative hydrogen source. Catal Today 2014;234:133-8.

169. Xiang Y, Li X, Lu C, Ma L, Yuan J, Feng F. Reaction performance of hydrogen from aqueous-phase reforming of methanol or ethanol in hydrogenation of phenol. Ind Eng Chem Res 2011;50:3139-44.

170. Snåre M, Kubičková I, Mäki-arvela P, Eränen K, Murzin DY. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind Eng Chem Res 2006;45:5708-15.

171. Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 2009;48:10324-34.

172. Zhao X, Cai Z, Wang T, O’reilly S, Liu W, Zhao D. A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene. Appl Catal B Environ 2016;187:134-43.

173. Ghassabzadeh H, Rashidzadeh M, Niaei A. A novel fast evaluation method for mesoporous NiMo/Al2O3 hydrodemetallization (HDM) catalysts: activity and metal uptake capacity measurements. Reac Kinet Mech Cat 2020;130:381-402.

174. Sui B, Wang G, Yuan S, et al. Macroporous Al2O3 with three-dimensionally interconnected structure: catalytic performance of hydrodemetallization for residue oil. J Fuel Chem Technol 2021;49:1201-7.

175. Kim J, Longstaff DC, Hanson FV. Upgrading of bitumen-derived heavy oils over a commercial HDN catalyst. Fuel 1997;76:1143-50.

176. Ancheyta-juárez J, Maity S, Betancourt-rivera G, Centeno-nolasco G, Rayo-mayoral P, Gómez-pérez M. Comparison of different Ni-Mo/alumina catalysts on hydrodemetallization of Maya crude oil. Appl Catal A Gen 2001;216:195-208.

177. Liu T, Ju L, Zhou Y, et al. Effect of pore size distribution (PSD) of Ni-Mo/Al2O3 catalysts on the Saudi Arabia vacuum residuum hydrodemetallization (HDM). Catal Today 2016;271:179-87.

178. Rana MS, Alhumaidan FS, Navvamani R. Synthesis of large pore carbon-alumina supported catalysts for hydrodemetallization. Catal Today 2020;353:204-12.

179. Zhang B. Chapter 1: Hydroprocessing and the chemistry. In: Hydroprocessing catalysts and processes. Europe: World Scientific; 2018. p. 1-56.

180. Shi Y, Yang C, Zhao X, et al. Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets. Ind Eng Chem Res 2019;58:9829-37.

181. Garcia-Montoto V, Verdier S, Maroun Z, et al. Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization. Fuel Process Technol 2020;201:106341.

182. León AY, Guzman A, Laverde D, Chaudhari RV, Subramaniam B, Bravo-suárez JJ. Thermal cracking and catalytic hydrocracking of a colombian vacuum residue and its maltenes and asphaltenes fractions in toluene. Energy Fuels 2017;31:3868-77.

183. Rana MS, Ancheyta J, Maity S, Rayo P. Maya crude hydrodemetallization and hydrodesulfurization catalysts: an effect of TiO2 incorporation in Al2O3. Catal Today 2005;109:61-8.

184. Rana MS, Alhumaidan FS. Hydrometallization catalysts. Available from: https://patents.google.com/patent/US9861972B1/en. [Last accessed on 25 Oct 2023].

185. Dillon CJ, Maesen T, Kuperman AE. Hydrometallization catalyst and process. Available from: https://patents.google.com/patent/US8716164B2/en. [Last accessed on 25 Oct 2023]

186. Liu Z, Yuan J, Sun Z, et al. Morphology effect on catalytic performance of ebullated-bed residue hydrotreating over Ni-Mo/Al2O3 catalyst: a kinetic modeling study. Green Chem Eng 2022;In press.

187. Ghassabzaadeh H, Niaei A, Rashidzadeh M. Synthesis and characterization of multi-modal γ-Al2O3: a systematic investigation on the optimization of hydrodemetallization catalyst preparation. ChemistrySelect 2020;5:8892-905.

188. Kirgizov AY, Ding B, Spiridonov AA, et al. Ex situ upgrading of extra heavy oil: the effect of pore shape of Co-Mo/γ-Al2O3 catalysts. Catalysts 2022;12:1271.

189. Langlois GE, Sullivan RF. Chemistry of hydrocracking. In: Spillane LJ, Leftin HP, editors. Refining petroleum for chemicals. Washington: American Chemical Society; 1970. p. 38-67.

190. Muralidhar G, Massoth FE, Shabtai J. Catalytic functionalities of supported sulfides: I. Effect of support and additives on the CoMo catalyst. J Catal 1984;85:44-52.

191. Speight JG, El-Gendy NS. Introduction to petroleum biotechnology. Available from: https://www.sciencedirect.com/book/9780128051511/introduction-to-petroleum-biotechnology?via=ihub=. [Last accessed on 25 Oct 2023].

192. Weitkamp J. Catalytic hydrocracking-mechanisms and versatility of the process. ChemCatChem 2012;4:292-306.

193. Choudhary N, Saraf DN. Hydrocracking: a review. Ind Eng Chem Prod Res Dev 1975;14:74-83.

194. Mohanty S, Kunzru D, Saraf DN. Hydrocracking: a review. Fuel 1990;69:1467-73.

195. Qi L, Peng C, Cheng Z, Zhou Z. Selective hydrocracking of poly-aromatics to mono-aromatics in a catalyst grading system of NiMo/Al2O3-HY and NiMo/Beta. Fuel 2023;351:128941.

196. Qi L, Peng C, Cheng Z, Zhou Z. Structure-performance relationship of NiMo/Al2O3-HY catalysts in selective hydrocracking of poly-aromatics to mono-aromatics. Chem Eng Sci 2022;263:118121.

197. Yu F, Zhang C, Geng R, et al. Hydrocracking of naphthalene over Beta zeolite coupled with NiMo/γ-Al2O3: investigation of metal and acid balance based on the composition of industrial hydrocracking catalyst. Fuel 2023;344:128049.

198. Dik PP, Golubev IS, Kazakov MO, et al. Influence of zeolite content in NiW/Y-ASA-Al2O3 catalyst for second stage hydrocracking. Catal Today 2021;377:50-8.

199. Lee D, Kim KD, Lee YK. Highly active and stable CoWS2 catalysts in slurry phase hydrocracking of vacuum residue: XAFS studies. J Catal 2023;421:145-55.

200. Vela FJ, Palos R, Trueba D, Bilbao J, Arandes JM, Gutiérrez A. Different approaches to convert waste polyolefins into automotive fuels via hydrocracking with a NiW/HY catalyst. Fuel Process Technol 2021;220:106891.

201. Liu S, Kots PA, Vance BC, Danielson A, Vlachos DG. Plastic waste to fuels by hydrocracking at mild conditions. Sci Adv 2021;7:eabf8283.

202. Sun G, Liu D, Li M, et al. Atomic coordination structural dynamic evolution of single-atom Mo catalyst for promoting H2 activation in slurry phase hydrocracking. Sci Bull 2023;68:503-15.

203. Brito L, Payan F, Albrieux F, Guillon E, Martens JA, Pirngruber GD. Hydrocracking of a long chain alkyl-cycloalkane: role of porosity and metal-acid balance. ChemCatChem 2023;15:e202201286.

204. Dong Q, Zhang C, Zhang H, et al. Design and preparation of Pt@SSZ-13@β core-shell catalyst for hydrocracking of naphthalene. J Catal 2023;421:365-75.

205. Saab R, Polychronopoulou K, Zheng L, Kumar S, Schiffer A. Synthesis and performance evaluation of hydrocracking catalysts: a review. J Ind Eng Chem 2020;89:83-103.

206. Fan Y, Xiao H, Shi G, et al. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts. J Catal 2011;279:27-35.

207. Zepeda TA, Pawelec B, Obeso-estrella R, et al. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: diminishing of the inhibition of HDS reaction by support modification with P. Appl Catal B Environ 2016;180:569-79.

208. Topsøe H. The role of Co-Mo-S type structures in hydrotreating catalysts. Appl Catal A Gen 2007;322:3-8.

209. Lu Q, Chen CJ, Luc W, Chen JG, Bhan A, Jiao F. Ordered mesoporous metal carbides with enhanced anisole hydrodeoxygenation selectivity. ACS Catal 2016;6:3506-14.

210. Singh NR, Delgass WN, Ribeiro FH, Agrawal R. Estimation of liquid fuel yields from biomass. Environ Sci Technol 2010;44:5298-305.

211. Arora P, Abdolahi H, Cheah YW, et al. The role of catalyst poisons during hydrodeoxygenation of renewable oils. Catal Today 2021;367:28-42.

212. Cordero-lanzac T, Rodríguez-mirasol J, Cordero T, Bilbao J. Advances and challenges in the valorization of bio-oil: hydrodeoxygenation using carbon-supported catalysts. Energy Fuels 2021;35:17008-31.

213. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Env Prog Sustain Energy 2009;28:441-9.

214. Cinibulk J, Vı́t Z. Hydrodenitrogenation of pyridine over alumina-supported iridium catalysts. Appl Catal A Gen 1999;180:15-23.

215. Mendes FL, da Silva VT, Pacheco ME, Toniolo FS, Henriques CA. Bio-oil hydrotreating using nickel phosphides supported on carbon-covered alumina. Fuel 2019;241:686-94.

216. Li H, Liu J, Li J, et al. Promotion of the inactive iron sulfide to an efficient hydrodesulfurization catalyst. ACS Catal 2017;7:4805-16.

217. Budukvа SV, Klimоv OV, Uvаrkinа DD, et al. Reаctivаtiоn оf industriаl NiMоP/Аl2O3 hydrоtreаting cаtаlyst: effect оf оrthоphоsphоric аcid аdditiоn. Appl Catal A Gen 2020;592:117421.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/