REFERENCES

1. USGS. Mineral commodity summaries 2023. Available from: https://pubs.er.usgs.gov/publication/mcs2023. [Last accessed on 6 Nov 2023].

2. Han Z, Golev A, Edraki M. A review of tungsten resources and potential extraction from mine waste. Minerals 2021;11:701.

3. Leal-ayala DR, Allwood JM, Petavratzi E, Brown TJ, Gunn G. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities. Resour Conserv Recycl 2015;103:19-28.

4. Balatsky AV, Balatsky GI, Borysov SS. Resource demand growth and sustainability due to increased world consumption. Sustainability 2015;7:3430-40.

5. European Commission. Study on the EU’s list of critical raw materials. Available from: https://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en. [Last accessed on 6 Nov 2023].

6. Akçil A, Erüst Ünal C, Okudan MD. Gaining critical raw materials to circular economy by recycling. Bilimsel Madencilik Dergisi 2022;61:168-78. (in Turkish). Available from: https://www.researchgate.net/publication/359502178_Gaining_Critical_Raw_Materials_to_Circular_Economy_by_Recycling. [Last accessed on 6 Nov 2023]

7. Yilmaz E, Koohestani B, Cao S. Chapter 13 - Recent practices in mine tailings’ recycling and reuse. In: Managing mining and minerals processing wastes. Elsevier; 2023. p. 271-304.

8. Msumange D, Yazici EY, Celep O, Deveci H, Kritskii A, Karimov K. Recovery of Au and Ag from the roasted calcine of a copper-rich pyritic refractory gold ore using ion exchange resins. Miner Eng 2023;195:108017.

9. Kang J, Hu Y, Sun W, et al. A significant improvement of scheelite flotation efficiency with etidronic acid. J Clean Prod 2018;180:858-65.

10. Foucaud Y. Tungsten recovery from a skarn with a low separation contrast: contribution of molecular modelling in the flotation of calcium minerals. (in French). Available from: http://docnum.univ-lorraine.fr/public/DDOC_T_2019_0149_FOUCAUD.pdf. [Last accessed on 6 Nov 2023].

11. Mulenshi J, Khavari P, Chehreh Chelgani S, Rosenkranz J. Characterization and beneficiation options for tungsten recovery from yxsjöberg historical ore tailings. Processes 2019;7:895.

12. British Geological Survey (BGS). Tungsten. Available from: https://nora.nerc.ac.uk/id/eprint/17445/1/tungstenProfile[1].pdf. [Last accessed on 6 Nov 2023].

13. Mulenshi J. Reprocessing historical tailings for possible remediation and recovery of critical metals and minerals - The Yxsjöberg case. Available from: https://ltu.diva-portal.org/smash/get/diva2:1507097/FULLTEXT01.pdf. [Last accessed on 6 Nov 2023]

14. Graedel TE, Barr R, Chandler C, et al. Methodology of metal criticality determination. Environ Sci Technol 2012;46:1063-70.

15. European Commission. Critical raw materials resilience: charting a path towards greater security and sustainability. Available from: https://ec.europa.eu/docsroom/documents/42849. [Last accessed on 6 Nov 2020].

16. Foucaud Y, Filippov L, Filippova I, Badawi M. The challenge of tungsten skarn processing by froth flotation: a review. Front Chem 2020;8:230.

17. Tungsten market size 2022 global comprehensive research study, trends, share, development status, opportunities, future plans, competitive landscape and growth by forecast 2026. Available from: https://www.digitaljournal.com/pr/tungsten-market-size-2022-global-comprehensive-research-study-trends-share-development-status-opportunities-future-plans-competitive-landscape-and-growth-by-forecast-2026. [Last accessed on 6 Nov 2023].

18. Wang X, Qin W, Jiao F, et al. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China. T Nonferr Metal Soc 2022;32:2318-38.

19. Liu H, Liu H, Nie C, Zhang J, Steenari BM, Ekberg C. Comprehensive treatments of tungsten slags in China: a critical review. J Environ Manage 2020;270:110927.

20. Yang X. Beneficiation studies of tungsten ores - A review. Miner Eng 2018;125:111-9.

21. Foucaud Y, Filippova I, Dehaine Q, Hubert P, Filippov L. Integrated approach for the processing of a complex tungsten Skarn ore (Tabuaço, Portugal). Miner Eng 2019;143:105896.

22. Huang J, Ding Q, Wang Y, Hong H, Zhang H. The evolution and influencing factors of international tungsten competition from the industrial chain perspective. Resour Policy 2021;73:102185.

23. USGS. Mineral Commodity Summaries 2022. Available from: https://pubs.er.usgs.gov/publication/mcs2022. [Last accessed on 6 Nov 2023].

24. Global tungsten market to reach 115 thousand metric tons by 2026. Available from: https://www.globenewswire.com/en/news-release/2022/05/03/2434786/0/en/Global%20Tungsten%20Market-to-Reach-115-Thousand-Metric-Tons-by-2026.html. [Last accessed on 6 Nov 2023].

25. Global tungsten market 2024-2028. Available from: https://www.researchandmarkets.com/reports/5568234/global-tungsten-market-2024-2028. [Last accessed on 6 Nov 2023].

26. European Commission. Report on critical raw materials and the circular economy. Available from: https://op.europa.eu/en/publication-detail/-/publication/d1be1b43-e18f-11e8-b690-01aa75ed71a1/language-en/format-PDF/source-80004733. [Last accessed on 6 Nov 2023].

27. Mulenshi J, Gilbricht S, Chelgani SC, Rosenkranz J. Systematic characterization of historical tailings for possible remediation and recovery of critical metals and minerals - The Yxsjöberg case. J Geochem Explor 2021;226:106777.

28. Akcil A, Koldas S. Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 2006;14:1139-45.

29. Khavari P. Characterization of historical tungsten ore tailings for pre-selection of feasible reprocessing methods. Available from: https://www.diva-portal.org/smash/get/diva2:1248295/FULLTEXT01.pdf. [Last accessed on 6 Nov 2023]

30. Alfonso P, Tomasa O, Garcia-valles M, Tarragó M, Martínez S, Esteves H. Potential of tungsten tailings as glass raw materials. Mater Lett 2018;228:456-8.

32. Castro-Gomes JP, Silva AP, Cano RP, Durán Suarez J, Albuquerque A. Potential for reuse of tungsten mining waste-rock in technical-artistic value added products. J Clean Prod 2012;25:34-41.

33. Li Y, Zhang Y. Surface modification of tungsten tailings. In: Proceedings of the 2015 6th International Conference on Manufacturing Science and Engineering. 2015.

34. Yim G, Ji S, Cheong Y, Cho DW. Feasibility evaluation of utilizing mine tailings as a paste backfill material for mine filling. In: the 25th EGU General Assembly; 2023 Apr 24-28; Vienna, Austria; 2023.

35. Rosario ARA. Application of the electrodialytic process for tungsten recovery and arsenic removal from mine tailings. Available from: https://run.unl.pt/bitstream/10362/48731/1/Rosario_2018.pdf. [Last accessed on 6 Nov 2023]

36. Figueiredo J, Vila MC, Matos K, et al. Tailings reprocessing from Cabeço do Pião dam in Central Portugal: a kinetic approach of experimental data. J Sustain Min 2018;17:139-44.

37. Wang X, Qin W, Jiao F, et al. Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: a case study of Luoyang Yulu Mining Company. T Nonferr Metal Soc 2022;32:980-98.

38. United Nations. The sustainable development goals report 2022. Available from: https://unstats.un.org/sdgs/report/2022/. [Last accessed on 6 Nov 2023].

39. Tomas H. Le traitement des minerais de tungstène à Salau. Industrie minérale - Les techniques 1985;67:243-7. (in French).

40. Audion AS, Labbé JF. Panorama mondial 2011 du marché du tungstène. Rapport public BRGM/RP-61341-FR, Orléans, 2012. Available from: https://infoterre.brgm.fr/rapports/RP-61341-FR.pdf. [Last accessed on 6 Nov 2023].

41. Kazamel BG, Jamieson HE, Leybourne MI, Falck H. Factors controlling tungsten mobility in W-Cu skarn tailings. Chem Geol 2023;630:121487.

42. Suárez Sánchez A, Krzemień A, Riesgo Fernández P, Iglesias Rodríguez FJ, Sánchez Lasheras F, de Cos Juez FJ. Investment in new tungsten mining projects. Resour Policy 2015;46:177-90.

43. Peng K, Yang H, Ouyang J. Tungsten tailing powders activated for use as cementitious material. Powder Technol 2015;286:678-83.

44. White JS. Wolframite group. In: Mineralogy. Springer, Boston, MA. 1981. p. 520-1.

45. Grey IE, Birch WD, Bougerol C, Mills SJ. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. J Solid State Chem 2006;179:3860-9.

46. Sahama TG. The secondary tungsten minerals, a review. Mineral Rec 1981;12:81-7. Available from: https://rruff-2.geo.arizona.edu/uploads/MR12_81.pdf. [Last accessed on 6 Nov 2023]

47. Lassner E, Schubert WD. Tungsten. Kluwer Academic/Plenum Publishers, New York, USA. 1999. Available from: https://chemistlibrary.files.wordpress.com/2015/05/tungsten-1999-lassner-schubert.pdf. [Last accessed on 6 Nov 2023].

48. Rao NK. Beneficiation of tungsten ores in India: a review. Bull Mater Sci 1996;19:201-65.

49. Kim S, Baek SH, Han Y, Jeon HS. Laboratory testing of scheelite flotation from raw ore in Sangdong mine for process development. Minerals 2020;10:971.

50. Frolova IV, Tikhonov VV, Nalesnik OI, Streltsova AA. The enrichment of stale tailings of bom-gorhon tungsten ore deposits. Procedia Chem 2014;10:364-8.

51. Galera JM, de la Fuente F, García J, Calleja M, Pozo V. Design and construction of a tailings dam over an ancient tailings facility at La Parrilla mine. Mine Water Environ 2021;40:63-73.

52. Pascoe A. Collingwood plant for tungsten icon. Aust Paydirt 2009;1:69. Available from: https://search.informit.org/doi/epdf/10.3316/informit.033950255246461. [Last accessed on 6 Nov 2023]

53. North American tungsten investigates tailings reprocessing potential at the cantung mine site. Available from: https://theprospectornews.com/north-american-tungsten-investigates-tailings-reprocessing-potential-at-the-cantung-mine-site/. [Last accessed on 6 Nov 2023].

54. Hallberg A, Reginiussen H. Critical raw materials in ores, waste rock and tailings in Bergslagen. Geological Survey of Sweden; Uppsala, Sweden; 2020. Available from: https://www.sgu.se/globalassets/mineralnaring/mineralinformation/pdac-2021/critical-raw-materials-in-ores-waste-rock-and-tailings-in-bergslagen.pdf. [Last accessed on 6 Nov 2023].

55. Hällström LPB, Alakangas L, Martinsson O. Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden. Environ Sci Pollut Res Int 2020;27:6180-92.

56. Clemente D, Newling P, Botelho de Sousa A, Lejeune G, Barber SP, Tucker P. Reprocessing slimes tailings from a tungsten mine. Miner Eng 1993;6:831-9.

57. Barros SCLR, Ulla-Maija M, Willersinn S, Yang XS. Mapping the secondary resources in the EU (mine tailings, industrial waste). ICCRAM; Burgos, Spain. 2016. Available from: https://2020.prometia.eu/wp-content/uploads/2020/12/MSP-REFRAM-D3.1-Mapping-the-secondary-resources-in-the-eu-mine-tailings_industrial-waste.pdf. [Last accessed on 6 Nov 2023].

58. Chung AP, Coimbra C, Farias P, et al. Tailings microbial community profile and prediction of its functionality in basins of tungsten mine. Sci Rep 2019;9:19596.

59. Choi YW, Kim YJ, Choi O, Lee KM, Lachemi M. Utilization of tailings from tungsten mine waste as a substitution material for cement. Constr Build Mater 2009;23:2481-6.

60. Ikramova ZO, Mukhamedzhanova MT, Tukhtaeva GG. Tungsten-molybdenum ore flotation tailings for ceramic tile production. Glass Ceram 2009;66:102-3.

61. Doroshkevich SG, Bardamova IV. Phytotoxicity of tailings dam of the dzhidinsky tungsten-molybdenum combine (Western Transbaikalia). In: Frank-Kamenetskaya O, Panova E, Vlasov D, editors. Biogenic - Abiogenic Interactions in Natural and Anthropogenic Systems. Cham: Springer International Publishing; 2016. p. 277-87.

62. Meinert LD, Dipple GM, Nicolescu S. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP, editors. One Hundredth Anniversary Volume. Society of Economic Geologists; 2005.

63. Schmidt S, Geo P, Berbau W. From deposit to concentrate: the basics of tungsten mining. Part 1: project generation and project development. In: Proceedings of the ITIA’s 25th anniversary annual general meeting; 2012. Available from: https://www.itia.info/assets/files/newsletters/Newsletter_2012_06.pdf. [Last accessed on 6 Nov 2023]

64. Petrunic BM, Al TA. Mineral/water interactions in tailings from a tungsten mine, Mount Pleasant, New Brunswick. Geochim Cosmochim Acta 2005;69:2469-83.

65. Bhanbhro R. Mechanical properties of tailings: basic description of a tailings material from Sweden. Available from: https://www.diva-portal.org/smash/get/diva2:989943/FULLTEXT01.pdf. [Last accessed on 6 Nov 2023]

66. Acosta JA, Faz A, Martínez-Martínez S, Zornoza R, Carmona DM, Kabas S. Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 2011;109:8-17.

67. Petrunic BM, Al TA, Weaver L. A transmission electron microscopy analysis of secondary minerals formed in tungsten-mine tailings with an emphasis on arsenopyrite oxidation. Appl Geochem 2006;21:1259-73.

68. Kazamel BG, Jamieson HE, Leybourne MI, Falck H, Johannesson KH. Aqueous geochemistry and mineralogy of tungsten with emphasis on mine wastes. Econ Geol 2023;118:659-74.

69. Han Z, Levett A, Edraki M, Jones MWM, Howard D, Southam G. Microbially influenced tungsten mobilization and formation of secondary minerals in wolframite tailings. J Hazard Mater 2023;445:130508.

70. Kreissl S, Bolanz R, Göttlicher J, Steininger R, Tarassov M, Markl G. Structural incorporation of W6+ into hematite and goethite: a combined study of natural and synthetic iron oxides developed from precursor ferrihydrite and the preservation of ancient fluid compositions in hematite. Am Mineral 2016;101:2701-15.

71. Murciego A, Alvarez-Ayuso E, Pellitero E, et al. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. J Hazard Mater 2011;186:590-601.

72. Corkhill CL, Vaughan DJ. Arsenopyrite oxidation - A review. Appl Geochem 2009;24:2342-61.

73. King RJ. Arsenopyrite. Geology Today 2002;18:72-5.

74. Flemming RL, Salzsauler KA, Sherriff BL, Sidenko NV. Identification of scorodite in fine-grained, high-sulfide, arsenopyrite mine-waste using micro X-ray diffraction (μXRD). Can Mineral 2005;43:1243-54.

75. Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N. A review of tungsten: from environmental obscurity to scrutiny. J Hazard Mater 2006;136:1-19.

76. Wasel O, Freeman JL. Comparative assessment of tungsten toxicity in the absence or presence of other metals. Toxics 2018;6:66.

77. Toxicological Profile for Tungsten. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp186.pdf. [Last accessed on 3 Nov 2023].

78. Reutova NV, Reutova TV, Dreeva FR, Shevchenko AA. Long-term impact of the Tyrnyauz tungsten-molybdenum mining and processing factory waste on environmental pollution and children’s population. Environ Geochem Health 2022;44:4557-68.

79. Seiler RL, Stollenwerk KG, Garbarino JR. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada. Appl Geochem 2005;20:423-41.

80. Sheppard PR, Ridenour G, Speakman RJ, Witten ML. Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: possible implications for the childhood leukemia cluster. Appl Geochem 2006;21:152-65.

81. Sheppard PR, Witten ML. Dendrochemistry of urban trees in an environmental exposure analysis of childhood leukemia cluster areas. EOS Trans AGU 2023;84. Available from: https://www.researchgate.net/publication/253790587_Dendrochemistry_of_Urban_Trees_in_an_Environmental_Exposure_Analysis_of_Childhood_Leukemia_Cluster_Areas. [Last accessed on 3 Nov 2023]

82. Kraus T, Schramel P, Schaller KH, Zöbelein P, Weber A, Angerer J. Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds. Occup Environ Med 2001;58:631-4.

83. Sahle W, Krantz S, Christensson B, Laszlo I. Preliminary data on hard metal workers exposure to tungsten oxide fibres. Sci Total Environ 1996;191:153-67.

84. Candeias C, Ávila PF, da Silva EF, Ferreira A, Durães N, Teixeira JP. Water-rock interaction and geochemical processes in surface waters influenced by tailings impoundments: impact and threats to the ecosystems and human health in rural communities (Panasqueira Mine, Central Portugal). Water Air Soil Pollut 2015;226:23.

85. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG. 9.05 - The geochemistry of acid mine drainage. Treatise Geochem 2003;9:149-204.

86. State Council. Environmental protection law of the PRC. Available from: http://www.npc.gov.cn/npc/c1773/c2518/c27694/c27698/201905/t20190521_208293.html. (in Chinese). [Last accessed on 3 Nov 2023].

87. Lekic M, Crnogorac L, Pantelic U, Nikic Z. Possibility of application of phytoremediation in mining. In: 6th International Symposium on Mining and Environmental Protection; Vrdnik, Serbia. 2017. Available from: https://www.researchgate.net/publication/319902007_POSSIBILITY_OF_APPLICATION_OF_PHYTOREMEDIATION_IN_MINING. [Last accessed on 3 Nov 2023]

88. Lamb DT, Venkatraman K, Bolan N, Ashwath N, Choppala G, Naidu R. Phytocapping: an alternative technology for the sustainable management of landfill sites. Crit Rev Environ Sci Technol 2014;44:561-637.

89. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003;50:775-80.

90. Tordoff GM, Baker AJM, Willis AJ. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000;41:219-28.

91. Sharma HD, Reddy KR. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. 2004. Available from: https://www.wiley.com/en-us/Geoenvironmental+Engineering%3A+Site+Remediation%2C+Waste+Containment%2C+and+Emerging+Waste+Management+Technologies-p-9780471215998. [Last accessed on 3 Nov 2023].

92. Ghosh M. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Env Res 2005;3:1-18.

93. Karaca O, Cameselle C, Reddy KR. Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Rev Environ Sci Biotechnol 2018;17:205-28.

94. Mendez MO, Maier RM. Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 2008;7:47-59.

95. USEPA. Introduction to phytoremediation. Available from: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=63433. [Last accessed on 3 Nov 2023].

96. Reddy KR, Adams JA. Sustainable remediation of contaminated sites. Momentum Press; 2015. Available from: https://www.researchgate.net/publication/312433183_Sustainable_Remediation_of_Contaminated_Sites. [Last accessed on 3 Nov 2023].

97. Tamás J, Kovács A. Vegetation pattern and heavy metal accumulation at a mine tailing at Gyöngyösoroszi, hungary. Z Naturforsch C J Biosci 2005;60:362-7.

98. Prasad MNV. Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. In: Prasad MNV, editor. Heavy metal stress in plants. Berlin: Springer Berlin Heidelberg; 2004. p. 345-91.

99. Favas PJC, Pratas J, Varun M, D’souza R, Paul MS. Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Hernandez-Soriano MC, editor. Environmental risk assessment of soil contamination. 2014. p. 486-510.

100. Figueiredo J, Vila MC, Fiúza A, et al. A holistic approach in re-mining old tailings deposits for the supply of critical-metals: a portuguese case study. Minerals 2019;9:638.

101. Huang Z, Zhang S, Wang H, et al. Recovery of wolframite from tungsten mine tailings by the combination of shaking table and flotation with a novel “crab” structure sebacoyl hydroxamic acid. J Environ Manage 2022;317:115372.

102. Petruk W. Chapter 7 - Applied mineralogy: porphyry copper deposits. In: Applied Mineralogy in the Mining Industry. Elsevier; 2000. p. 135-47.

103. Tungpalan K, Wightman E, Manlapig E. Relating mineralogical and textural characteristics to flotation behaviour. Miner Eng 2015;82:136-40.

104. Lotter NO, Oliveira JF, Hannaford AL, Amos SR. Flowsheet development for the Kamoa project - A case study. Miner Eng 2013;52:8-20.

105. Whiteman E, Lotter NO, Amos SR. Process mineralogy as a predictive tool for flowsheet design to advance the Kamoa project. Miner Eng 2016;96-7:185-93.

106. Burt RO. Gravity concentration methods. In: Yarar B, Dogan ZM, editors. Mineral processing design. Dordrecht: Springer Netherlands; 1987. p. 106-37.

107. Das A, Sarkar B. Advanced gravity concentration of fine particles: a review. Miner Process Extr Metall Rev 2018;39:359-94.

108. Burt RO, Mills C. Gravity concentration technology. Elsevier; 1984. Available from: https://www.osti.gov/biblio/7181338. [Last accessed on 3 Nov 2023]

109. Abols JA, Grady PM. Maximizing gravity recovery through the application of multiple gravity devices. Available from: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A6D569026D2BFE861C3B4CA9AE20F638?doi=10.1.1.492.1408&rep=rep1&type=pdf. [Last accessed on 3 Nov 2023].

110. Meng Q, Feng Q, Ou L. Recovery enhancement of ultrafine wolframite through hydrophobic flocs magnetic separation. Miner Process Extr Metall Rev 2017;38:298-303.

111. Yue T, Han H, Hu Y, et al. Beneficiation and purification of tungsten and cassiterite minerals using Pb-BHA complexes flotation and centrifugal separation. Minerals 2018;8:566.

112. Das SK, Kundu T, Dash N, Angadi SI. Separation behavior of Falcon concentrator for the recovery of ultrafine scheelite particles from the gold mine tailings. Sep Purif Technol 2023;309:123065.

113. Dehaine Q, Tijsseling LT, Glass HJ, Törmänen T, Butcher AR. Geometallurgy of cobalt ores: a review. Miner Eng 2021;160:106656.

114. Ye M, Li G, Yan P, et al. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere 2017;185:1189-96.

115. Blazevic A, Albu M, Mitsche S, Rittmann SKR, Habler G, Milojevic T. Biotransformation of scheelite CaWO4 by the extreme thermoacidophile metallosphaera sedula: tungsten-microbial interface. Front Microbiol 2019;10:1492.

116. Lee E, Han Y, Park J, et al. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manage 2015;147:124-31.

117. Evdokimov SI, Evdokimov VS. Flotation of wolfram-molybdenum sand tailings at Tyrnyauz processing plant. Gorn Zhurnal 2015:63-8.

118. Rao GM, Subrahmanyam NN. Beneficiation of tungsten ores in India - problems, processes, applications and demands in general on a global scene. Fizykochemiczne Problemy Mineralurgii 1986;18:23-37. Available from: https://www.journalssystem.com/ppmp/pdf-80262-16167?filename=Beneficiation%20of%20tungsten.pdf. [Last accessed on 6 Nov 2023]

119. Zhong G, Yu L, Liu L, Zhong S, Zhang C. Experiment on recovering scheelite from the Cu-S tailings by gravity separation. Chin Tungsten Ind 2016;252:17-21. Available from: http://caod.oriprobe.com/articles/48370725/Experiment_on_Recovering_Scheelite_from_the_Cu_S_Tailings_by_Gravity_S.htm. [Last accessed on 6 Nov 2023]

120. Xiao W, Xie J, Chen Z. New gravity separation technology for recovering tungsten and cassiterite from the tailings of scheelite concentrate. Chin Tungsten Ind 2015;247:14-7. Available from: http://caod.oriprobe.com/articles/45503795/New_Gravity_Separation_Technology_for_Recovering_Tungsten_and_Cassiter.htm. [Last accessed on 6 Nov 2023]

121. Li M, Wang X. Experimental research on recycling flotation tailings in a scheelite mine in Gansu. Chin Tungsten Ind 2015;246:17-20. Available from: http://caod.oriprobe.com/articles/44928374/Experimental_Research_on_Recycling_Flotation_Tailings_in_a_Scheelite_M.htm. [Last accessed on 6 Nov 2023]

122. Xiao JH, Feng QM, Fan SP, Xu LH, Wang Z. Comprehensive utilization of copper, tungsten and tin polymetallic tailings in Bolivia. Chin J Nonferrous Met 2013;23:2949-61. (in Chinese).

123. Lv J, Qu Z, Li M. Industrialized flotation experiments on the fine mud discharge of a wolframite concentrator. Chin Tungsten Ind 2015;30:36-40. Available from: https://caod.oriprobe.com/articles/44928375/Industrialized_Flotation_Experiments_on_the_Fine_Mud_Discharge_of_a_Wo.htm. [Last accessed on 6 Nov 2023]

124. Bhagat RP, Pathak PN. The effect of polymeric dispersant on magnetic separation of tungsten ore slimes. Int J Miner Process 1996;47:213-7.

125. RPA. Study on data needs for a full raw materials flow analysis. Available from: https://op.europa.eu/en/publication-detail/-/publication/10ed5c27-edec-43de-8e6f-9676e9308af5. [Last accessed on 6 Nov 2023].

126. Gomez-flores A, Mweene L, Kim H, Leal Filho LDS. The latest green and sustainable development of mineral processing and extraction. Miner Miner Mater 2023;2:6.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/