REFERENCES

1. Yang S, Wan X, Wei K, Ma W, Wang Z. Silicon recycling and iron, nickel removal from diamond wire saw silicon powder waste: synergistic chlorination with CaO smelting treatment. Miner Eng 2021;169:106966.

2. Tuncuk A, Akcil A. Iron removal in production of purified quartz by hydrometallurgical process. Int J Miner Process 2016;153:44-50.

3. Vatalis KI, Charalambides G, Benetis NP. Market of high purity quartz innovative applications. Procedia Econ Financ 2015;24:734-42.

4. Jia D, Zhang W, Chen C, et al. Global resource status and China’s development suggestions of high purity quartz. Conserv Util Miner Res 2019;39:111-7.

5. Zhang H, Guo S, Wu J, Wu D, Wei K, Ma W. Effect of quartz crystal structure transformations on the removal of iron impurities. Hydrometallurgy 2021;204:105715.

6. Müller A, Ihlen PM, Wanvik JE, Flem B. High-purity quartz mineralisation in kyanite quartzites, Norway. Miner Depos 2007;42:523-35.

7. Santos MFM, Fujiwara E, Schenkel EA, Enzweiler J, Suzuki CK. Processing of quartz lumps rejected by silicon industry to obtain a raw material for silica glass. Int J Miner Process 2015;135:65-70.

8. Du F, Li J, Li X, Zhang Z. Improvement of iron removal from silica sand using ultrasound-assisted oxalic acid. Ultrason Sonochem 2011;18:389-93.

9. Šuba J, Štyriaková D. Iron minerals removal from different quartz sands. Procedia Earth Planet Sci 2015;15:849-54.

10. Yin W, Wang D, Drelich JW, et al. Reverse flotation separation of hematite from quartz assisted with magnetic seeding aggregation. Miner Eng 2019;139:105873.

11. Lin M, Pei Z, Lei S. Mineralogy and processing of hydrothermal vein quartz from Hengche, Hubei Province (China). Minerals 2017;7:161.

12. Yang C, Li S, Bai J, Han S. Advanced purification of industrial quartz using calcination pretreatment combined with ultrasound-assisted leaching. Acta Geody Geomater 2018;15:187-95. Available from: https://pdfs.semanticscholar.org/21cf/207e5638e54d9c9d6cc3358497a3fd7db59a.pdf. [Last accessed on 27 Nov 2023]

13. Dal Martello E, Tranell G, Gaal S, Raaness OS, Tang K, Arnberg L. Study of pellets and lumps as raw materials in silicon production from quartz and silicon carbide. Metall Mater Trans B 2011;42:939-50.

14. Zhong LL, Lei SM, Wang EW, Pei ZY, Li L, Yang YY. Research on removal impurities from vein quartz sand with complexing agents. Appl Mech Mater 2013;454:194-9.

15. Zhang Z, Li J, Li X, Huang H, Zhou L, Xiong T. High efficiency iron removal from quartz sand using phosphoric acid, Int J Miner Process 2012;114-7:30-4.

16. Arslan V. Comparison of the effects of aspergillus niger and aspergillus ficuum on the removal of impurities in feldspar by bio-beneficiation. Appl Biochem Biotechnol 2019;189:437-47.

17. Johnson DB. Biomining - biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotech 2014;30:24-31.

18. Brierley CL. How will biomining be applied in future? T Nonferr Metal Soc 2008;18:1302-10.

19. Wang Z, Nin S, Yang G. Causation analysis of quartz price in China. Coal Geol China 2021;33:48-50.

20. Hao W, Feng S, Zhan J, Zhang X, Li G. Current situation, production, consumption and trade pattern of high purity quartz in the world. CNMI 2020:15-19.

21. Chen Z, Yan L, Gao S. Analysis on the situation of strategic non-metallic mineral resources. CNMI 2021:1-8,23.

22. Müller A, Koch-Müller M. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 2009;73:569-83.

23. Pan X, Li S, Li Y, Guo P, Zhao X, Cai Y. Resource, characteristic, purification and application of quartz: a review. Miner Eng 2022;183:107600.

24. Li J, Lin Y, Wang F, et al. Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Sep Purif Technol 2021;254:117581.

25. Lei Y, Qiu P, Chen K, et al. Mechanism of ZrB2 formation in Al-Si alloy and application in Si Purification. ACS Sustain Chem Eng 2019;7:12990-6.

26. Ding Z, Ma W, Wei K, Wu J, Zhou Y, Xie K. Boron removal from metallurgical-grade silicon using lithium containing slag. J Non Cryst Solids 2012;358:2708-12.

27. Yang X, Sun C, Cao J, Shi J. High purity quartz: research progress and perspective review. Geosci Front 2022;29:231-44.

28. Minami T, Maeda S, Higasa M, Kashima K. In-situ observation of bubble formation at silicon melt-silica glass interface. J Cryst Growth 2011;318:196-9.

29. Dhamrin M, Saitoh T, Kamisako K, et al. Technology development of high-quality n-type multicrystalline silicon for next-generation ultra-thin crystalline silicon solar cells. Sol Energy Mater Sol Cells 2009;93:1139-42.

30. Kvande R, Arnberg L, Martin C. Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells. J Cryst Growth 2009;311:765-8.

31. Xu Y, Li J, Tan Q, Peters AL, Yang C. Global status of recycling waste solar panels: a review. Waste Manage 2018;75:450-8.

32. Huang WH, Shin WJ, Wang L, Sun WC, Tao M. Strategy and technology to recycle wafer-silicon solar modules. Sol Energy 2017;144:22-31.

33. Dias P, Javimczik S, Benevit M, Veit H, Bernardes AM. Recycling WEEE: extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Manage 2016;57:220-5.

34. Shi Y, Zhang L, Zhou D, et al. Study on preparation and application of higher purity quartz sand. China Build Mater Sci Technol 2019;28:73-5. Available from: https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0 hJTmV3UzIwMjMwODMxEg96Z2pja2oyMDE5MDQwMzUaCHRmenkxY3My. [Last accessed on 27 Nov 2023].

35. Götze J. Classification, mineralogy and industrial potential of SiO2 minerals and rocks. In: Götze J, Möckel R, editors. Quartz: deposits, mineralogy and analytics. Springer; 2012. p. 1-27.

36. Mirwald PW, Massonne HJ. The low-high quartz and quartz-coesite transition to 40 kbar between 600° and 1600°C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition. J Geophys Res 1980;85:6983-90.

37. Gotze J. Chemistry, textures and physical properties of quartz - geological interpretation and technical application. Mineral Mag 2009;73:645-71.

38. Martinusz K, Czirók E, Inzelt G. Studies of the formation and redox transformation of poly(o-phenylenediamine) films using a quartz crystal microbalance. J Electroanal Chem 1994;379:437-44.

39. Dapiaggi M, Pagliari L, Pavese A, Sciascia L, Merli M, Francescon F. The formation of silica high temperature polymorphs from quartz: influence of grain size and mineralising agents. J Eur Ceram Soc 2015;35:4547-55.

40. Dal Martello E, Tranell G, Ostrovski O, et al. Trace elements in the Si furnace. Part I: behavior of impurities in quartz during reduction. Metall Mater Trans B 2013;44:233-43.

41. Pabst W, Gregorova E. Elastic properties of silica polymorphs - a review. Ceram Silikaty 2013;57:167-84. Available from: https://www.researchgate.net/publication/282407023_Elastic_Properties_of_Silica_Polymorphs_. [Last accessed on 27 Nov 2023].

42. Yang S, Wan X, Wei K, Ma W, Wang Z. Silicon recovery from diamond wire saw silicon powder waste with hydrochloric acid pretreatment: an investigation of Al dissolution behavior. Waste Manage 2021;120:820-7.

43. Müller A, Wanvik JE, Ihlen PM. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In: Götze J, Möckel R, editors. Quartz: deposits, mineralogy and analytics. Springer; 2012. p. 71-118.

44. Rakov LT. Mechanisms of isomorphic substitution in quartz. Geochemistry Int 2006;44:1004-14.

45. Zhang Y, Zhao H, Liu L, et al. Timing of granite pegmatite-type high-purity quartz deposit in the Eastern Qinling, China: constraints from in-situ LA-ICP-MS trace analyses of quartz and monazite U-Pb dating. Acta Geochimica 2022;41:197-207.

46. Götze J, Pan Y, Müller A. Mineralogy and mineral chemistry of quartz: a review. Mineral Mag 2021;85:639-64.

47. Seifert W, Rhede D, Thomas R, et al. Distinctive properties of rock-forming blue quartz: inferences from a multi-analytical study of submicron mineral inclusions. Mineral Mag 2011;75:2519-34.

48. Meng D, Wu X, Fan X, Meng X, Zheng J, Mason R. Submicron-sized fluid inclusions and distribution of hydrous components in jadeite, quartz and symplectite-forming minerals from UHP jadeite-quartzite in the Dabie Mountains, China: TEM and FTIR investigation. Appl Geochem 2009;24:517-26.

49. Alderton D. Fluid inclusions. In: Alderton D, Elias SA, editors. Encyclopedia of geology. Second Edition. Academic Press, Oxford; 2021. p. 554-67.

50. Ibrahim SS, Shahien MG, Seliem AQ, Abukhadra MR, Zayed AM. Marwit rod El leqah quartz deposits as a strategic source of high purity quartz. J Geosci Environ Prot 2015;3:41-7.

51. Ji Z, Ge C, Zhou M, Zhang N. Quartz-hosted fluid inclusions characteristics and their implications for fluvial deposits along the Changjiang River. J Earth Sci 2020;31:571-81.

52. Wu X. Selection and evaluation of high purity quartz materials and purification technology research. Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkkyu7xrzFWukWIylgpWWcEil4o_ZKPbsJiV1tmtey1IynlZVfZr-tRzDM8fi2mcbs&uniplatform=NZKPT. [Last accessed on 24 Nov 2023].

53. Sheng YM, Xia QK, Dallai L, Yang XZ, Hao YT. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim Cosmochim Acta 2007;71:2079-103.

54. Xu W, Liu XW, Jin ZM. Water in UHP eclogites at CCSD: FTIR analysis. Earth Sci J China Univ Geosci 2006;31:830-8. Available from: https://www.researchgate.net/publication/287907410_Water_in_UHP_eclogites_at_CCSD_FTIR_analysis.[Last accessed on 27 Nov 2023].

55. Su W, Ji Z, Ye K, et al. Distribution of hydrous components in jadeite of the Dabie Mountains. Earth Planet Sci Lett 2004;222:85-100.

56. Phelan VJ, Powell RJW. Combined reagent purification and sample dissolution (CORPAD) applied to the trace analysis of silicon, silica and quartz. Analyst 1984;109:1269-72.

57. Devi PS, Chavan TA, Ghosh M, Swain KK. Total reflection X-ray fluorescence analysis of high purity quartz: a bottom-up approach of uncertainty evaluation. Spectrochim Acta Part B 2021;178:106127.

58. Sigue C, Moundi A, Suh CE, et al. Assessment of shear zone-derived quartz from the Etam area, southwest Cameroon as potential high-purity quartz resource: petrography, geochemistry and technological studies. SN Appl Sci 2020;2:551.

59. Vatalis KI, Charalampides G, Platias S, Benetis NP. Market developments and industrial innovative applications of high purity quartz refines. Procedia Econ Financ 2014;14:624-33.

60. Bestmann M, Pennacchioni G. Ti distribution in quartz across a heterogeneous shear zone within a granodiorite: the effect of deformation mechanism and strain on Ti resetting. Lithos 2015;227:37-56.

61. de Oliveira CE, Pe-Piper G, Piper DJW, Zhang Y, Corney R. Integrated methodology for determining provenance of detrital quartz using optical petrographic microscopy and cathodoluminescence (CL) properties. Mar Pet Geol 2017;88:41-53.

62. Haus R, Prinz S, Priess C. Assessment of high purity quartz resources. In: Götze J, Möckel R, editors. Quartz: deposits, mineralogy and analytics. Springer Berlin Heidelberg; 2012. p. 29-51.

63. Lin M, Pei Z, Li Y, Liu Y, Wei Z, Lei S. Separation mechanism of lattice-bound trace elements from quartz by KCl-doping calcination and pressure leaching. Miner Eng 2018;125:42-9.

64. Ma C, Feng A, Liu C, Shao W, Zhao P. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz. Conserv Util Miner Res 2019;39:48-57.

65. Li J, Liu J, Sun J, Li X, Zhao J, Guo X. Study on the effects of purification of noncrystalline micro silica powder using flotation process. Goal Prep Technol 2021:136-41.

66. Luo S, Deng Y, Wang M, Deng Z. Study on properties and processing technology for konilite in Qiannan, Guizhou. Conserv Util Miner Res 2013:39-43.

67. Vereshchagin VI, Safronov VN, Kotenko LK. The effect of a high-voltage pulse discharge on the crystal lattice and the surface of quartz grains. Glass Ceram 2002;59:47-9.

68. Dal Martello E, Bernardis S, Larsen RB, Tranell G, Di Sabatino M, Arnberg L. Electrical fragmentation as a novel route for the refinement of quartz raw materials for trace mineral impurities. Powder Technol 2012;224:209-16.

69. Wu H, Liu R, Zhong Z. A new separation technology of geological samples: working principles and application prospects of electrodynamic disaggregation method. Geol Sci Technol Information 2016;35:257-61. Available from: https://dzkjqb.cug.edu.cn/cn/article/id/9286. [Last accessed on 27 Nov 2023].

70. Martynov N, Avramov D, Kozlov G, Pushkarev M. Pulsed electric discharge for environmentally friendly cleaning and crushing of quartz sand. E3S Web of Conferences 2020;203:04011.

71. Wang S, Feng J, Li Q, Wang B, Shen Y. Preliminary study on the application of color sorter in the reconcentration of kaolin tailings. CNMI 2019:23-4,27.

72. OuYang J, Chen G, Liang L, Peng Y, Zhou W. Quartz mineral purification and application technology in strategic emerging industries. Conserv Util Miner Res 2021;41:35-45.

73. Yue L. Review on preparation technology of high purity quartz. Multipurpose Util Miner Res 2014:16-9.

74. Kang W, Xun H, Kong X, Li M. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Min Sci Technol Chin 2009;19:498-507.

75. Yang L, Li X, Li W, Yan X, Zhang H. Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method. Sep Purif Technol 2019;227:115701.

76. Videla AR, Morales R, Saint-Jean T, Gaete L, Vargas Y, Miller JD. Ultrasound treatment on tailings to enhance copper flotation recovery. Miner Eng 2016;99:89-95.

77. Lei Q, Zheng D. A review of preparation methods and applications for high-purity quartz. Jiangxi Sci 2008;26:915-8.

78. Zhong Y. Preparation and mechanism study of ultra-high purity quartz purification. In: Wuhan University of Technology; 2015. Available from: https://wf.pub/thesis/article:D795473. [Last accessed on 27 Nov 2023]

79. Rahimi M, Rahimi M, Rezai B, Aslani MR. Influence of the roughness and shape of quartz particles on their flotation kinetics. Int J Miner Metall Mater 2012;19:284-9.

80. Li Y, Li S, Zhao X, Pan X, Guo P. Separation and purification of high-purity quartz from high-silicon iron ore tailing: an innovative strategy for comprehensive utilization of tailings resources. Process Saf Environ 2023;169:142-8.

81. Ge W, Encinas A, Araujo E, Song S. Magnetic matrices used in high gradient magnetic separation (HGMS): a review. Results Phys 2017;7:4278-86.

82. Lindner J, Menzel K, Nirschl H. Simulation of magnetic suspensions for HGMS using CFD, FEM and DEM modeling. Comput Chem Eng 2013;54:111-21.

83. Zheng X, Sun Z, Wang Y, Lu D, Xue Z. Matching relation between matrix aspect ratio and applied induction for maximum particle capture in longitudinal high gradient magnetic separation. Sep Purif Technol 2020;241:116687.

84. Ohara T, Kumakura H, Wada H. Magnetic separation using superconducting magnets. Physica C Supercond 2001;357-60:1272-80.

85. Şahbaz O, Uçar A, Öteyaka B. Velocity gradient and maximum floatable particle size in the Jameson cell. Miner Eng 2013;41:79-85.

86. Sahoo H, Rath SS, Das B. Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz. Sep Purif Technol 2014;136:66-73.

87. Lei S, Xiang W, Liu Y, Zhang F, Liu X. Study on reverse-flotation technology of preparing high quartz sand with vein quartz. Non-Metallic Mines 2012;35:25-8.

88. Fan P, Xie X, Song Q, Bai F, Du Y. The actuality of research and beneficiation of high purity quartz sand in China. Mining Metall 2018;27:18-22.

89. Zheng C, Song Y, Yang W, Zhu W, Yan Y. Study on technology for purification of quartz. CNMI 2008:16-8.

90. Shan ZQ, Shu XQ, Feng JF, Zhou WN. Modified calcination conditions of rare alkali metal Rb-containing muscovite (KAl2[AlSi3O10](OH)2). Rare Metals 2013;32:632-5.

91. Chintaparty CR. Influence of calcination temperature on structural, optical, dielectric properties of nano zirconium oxide. Optik 2016;127:4889-93.

92. Pei Z, Lin M, Meng Y, et al. Efficient separation of trace muscovite within the surface/interface of quartz grains from a hydrothermal deposit by oxidizing calcination and catalytic pressure leaching. Mining Metall Explor 2019;36:313-25.

93. Zhang QJ, Wang X, Chen JM, Zhuang GS. Formation of Fe(II) (aq) and sulfate via heterogeneous reaction of SO2 with Fe2O3. Chem J Chin Univ 2006;27:1347-50. Available from: https://www.researchgate.net/publication/287671310_Formation_of_FeII_aq_and_sulfate_via_heterogeneous_reaction_of_SO2_with_Fe2O3. [Last accessed on 27 Nov 2023].

94. Du X, Yang D, Zheng S, Sun Z, Li C. Deep insight into the reductive roasting treatment on iron removing from quartz. Adv Powder Technol 2021;32:4825-32.

95. Wang L, Sun W, Hu YH, Xu LH. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite - Quartz flotation system. Miner Eng 2014;64:44-50.

96. Yan Y, Lu Y, Zheng C, Zhu W. A new technology for Fe-and Ti-removal from quartz sand. Multipurpose Util Miner Res 2009:16-9.

97. Lou C, Zhang G, Ouyang B, et al. Study on high temperature chlorination purification of quartz sand. Ind Miner Process 2020;49:16-9.

98. Xu C. Study on the effect of calcination on the characteristics of quartz grinding and acid leaching. (in Chinese) Available from: https://d.wanfangdata.com.cn/thesis/ChJUaGVzaXNOZXdTMjAyMzA5MDESCFkyOTk0ODAzGghlbHhucGZjOQ%3D%3D. [Last accessed on 27 Nov 2023]

99. Zhang H, Ma Y, Tan X, Wu Z. Research progress on impurity characteristics and deep chemical purification technology in high-purity quartz. Conserv Util Miner Res 2022;42:1-12.

100. Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 2010;494:175-89.

101. Upadhyaya A, Tiwari SK, Mishra P. Microwave sintering of W-Ni-Fe alloy. Scripta Mater 2007;56:5-8.

102. Menezes RR, Souto PM, Kiminami RHGA. Microwave hybrid fast sintering of porcelain bodies. J Mater Process Tech 2007;190:223-9.

103. Leonelli C, Veronesi P, Denti L, Gatto A, Iuliano L. Microwave assisted sintering of green metal parts. J Mater Process Tech 2008;205:489-96.

104. Malhotra A, Hosseini M, Hooshmand Zaferani S, Hall M, Vashaee D. Enhancement of diffusion, densification and solid-state reactions in dielectric materials due to interfacial interaction of microwave radiation: theory and experiment. ACS Appl Mater Interfaces 2020;12:50941-52.

105. Song W, Jiang X, Chen C, Ban B, Wan S, Chen J. Purification of quartz via low-temperature microwave chlorinated calcination combined with acid leaching and its mechanism. Silicon 2023;15:971-81.

106. Mandal AK, Sen R. An overview on microwave processing of material: a special emphasis on glass melting. Mater Manuf Process 2016;32:1-20.

107. Van den Kerkhof AM, Hein UF. Fluid inclusion petrography. Lithos 2001;55:27-47.

108. Li F, Jiang X, Zuo Q, Li J, Ban B, Chen J. Purification mechanism of quartz sand by combination of microwave heating and ultrasound assisted acid leaching treatment. Silicon 2021;13:531-41.

109. Hou Q, Li J, Yin R, Chen L, Li L. Study on the mineral process of gas-liquid inclusions removal in quartz sand under microwave and acid corrosion. J Hunan University Technol 2013;27:1-5.

110. Li X, Zhang Q, Xu H, Li M. Research on purification of quartz sand in Sichuan. Conserv Util Miner Res 2014:35-8.

111. Meshram P, Pandey BD, Mankhand TR. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 2014;150:192-208.

112. Zhou Y. Study on refining quartz powder by leaching in HF acid solution. J Mineral Petrol 2005;25:23-6.

113. Lin M, Lei S, Pei Z, Liu Y, Xia Z, Xie F. Application of hydrometallurgy techniques in quartz processing and purification: a review. Metall Res Technol 2018;115:303.

114. Zhang Y, Zeng J, Guo J. Simulated experimental study of feldspar dissolution in low temperature. Geol Rev 2009;55:134-42.

115. Larsen E, Kleiv RA. Flotation of quartz from quartz-feldspar mixtures by the HF method. Miner Eng 2016;98:49-51.

116. Tuncuk A, Akcil A. Effects of lixiviant (H2SO4 and C6H8O7) and reductant (H2O2) with an application of acid leaching in production of high quality quartz. J Chamber Min Eng Turkey 2013;52:9-20. (in Turkish). Available from: https://www.researchgate.net/publication/258567841_Effects_of_Lixiviant_H2SO4_and_C6H8O7_and_Reductant_H2O2_with_an_Application_of_Acid_Leaching_in_Production_of_High_Quality_Quartz. [Last accessed on 27 Nov 2023].

117. Zhang L, Lin X. Research on preparation of high-purified quardz micropowder & quardz glass sand from quartz rock. Non-Metallic Mines 2005;28:40-2.

118. Yu Z, Xie K, Ma W, Zhou Y, Xie G, Dai Y. Kinetics of iron removal from metallurgical grade silicon with pressure leaching. Rare Metals 2011;30:688-94.

119. Ebrahimfar F, Ahmadian M. Purification of metallurgical-grade silicon by acid leaching. Silicon 2019;11:1979-87.

120. Zang F, Lei S, Zhong Y, Pei Z, Yang Y, Xiong K. Purification of vein quartz by mixed acid thermal pressure leaching and it’s mechanism. China Min Mag 2016:106-10.

121. Xiong K, Lei S, Zhong Y, Pei Z, Yang Y, Zang F. Thermodynamic mechanismand purification of hot press leaching with vein quartz. Chin Min Mag 2016;25:129-33.

122. Lin M, Pei Z, Lei S, Liu Y, Xia Z, Xie F. Trace muscovite dissolution separation from vein quartz by elevated temperature and pressure acid leaching using sulphuric acid and ammonia chloride solutions. Physicochem Probl Miner Process 2018;54:448-58.

123. Styriaková I, Lovas M. Biological purification of silicate minerals. Adv Mat Res 2007;20-1:126-9.

124. Lian B, Fu PQ, Mo DM, Liu CQ. A comprehensive review of the mechanism of potassium releasing by silicate bacteria. Acta Mineral Sin 2002:179-83.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/