REFERENCES

1. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010;48:2118-22.

2. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev 2010;39:228-40.

3. Brodie BC. XIII. On the atomic weight of graphite. Phil Trans R Soc 1859;149:249-59.

4. Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 1898;31:1481-7.

5. Pei S, Cheng HM. The reduction of graphene oxide. Carbon 2012;50:3210-28.

6. Jr WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80:1339.

7. Hofmann U, König E. Untersuchungen über Graphitoxyd. Z Anorg Allg Chem 1937;234:311-36.

8. Hofmann U, Holst R. Über die Säurenatur und die Methylierung von Graphitoxyd. Ber dtsch Chem Ges A/B 1939;72:754-71.

9. Poh HL, Šimek P, Sofer Z, Pumera M. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 2013;7:5262-72.

10. Saŀer D, Ŀapeta D, Šrut Rakiŀ I, Peter R, Petraviŀ M, Kraljiŀ Rokoviŀ M. Tailoring polypyrrole supercapacitive properties by intercalation of graphene oxide within the layer. Electrochimica Acta 2016;193:311-20.

11. Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano 2010;4:4806-14.

12. Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010;4:2059-69.

13. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2010;2:581-7.

14. Sorokina NE, Khaskov MA, Avdeev VV, Nikol’skaya IV. Reaction of graphite with sulfuric acid in the presence of KMnO4. Russ J Gen Chem 2005;75:162-8.

15. Lu Y, Jiang Y, Wei W, et al. Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization. J Mater Chem 2012;22:2929-34.

16. Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem mater 2006;18:2740-9.

17. Ruess G. Über das Graphitoxyhydroxyd (Graphitoxyd). Monatshefte für Chemie 1947;76:381-417.

18. Mermoux M, Chabre Y, Rousseau A. FTIR and 13C NMR study of graphite oxide. Carbon 1991;29:469-74.

19. Scholz W, Boehm HP. Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids. Z Anorg Allg Chem 1969;369:327-40.

20. Nakajima T, Mabuchi A, Hagiwara R. A new structure model of graphite oxide. Carbon 1988;26:357-61.

21. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited‖. J Phys Chem B 1998;102:4477-82.

22. Sinclair RC, Coveney PV. Modeling nanostructure in graphene oxide: inhomogeneity and the percolation threshold. J Chem Inf Model 2019;59:2741-5.

23. Mouhat F, Coudert FX, Bocquet ML. Structure and chemistry of graphene oxide in liquid water from first principles. Nat Commun 2020;11:1566.

24. Boukhvalov DW, Katsnelson MI. Modeling of graphite oxide. J Am Chem Soc 2008;130:10697-701.

25. Schniepp HC, Li JL, McAllister MJ, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 2006;110:8535-9.

26. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 2006;16:155-8.

27. Stankovich S, Dikin DA, Piner RD, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45:1558-65.

28. Geng Y, Wang SJ, Kim JK. Preparation of graphite nanoplatelets and graphene sheets. J colloid interface Sci 2009;336:592-8.

29. Ramanathan T, Abdala AA, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 2008;3:327-31.

30. Ozbas B, O’neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH. Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci B Polym Phys 2012;50:910-6.

31. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JM. Graphene oxide dispersions in organic solvents. Langmuir 2008;24:10560-4.

32. Hill CM, Zhu Y, Pan S. Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): graphene oxide bulk heterojunction photovoltaic devices. ACS Nano 2011;5:942-51.

33. Park S, An J, Piner RD, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 2008;20:6592-4.

34. Ionov AN, Volkov MP, Nikolaeva MN, Smyslov RY, Bugrov AN. Magnetization of ultraviolet-reduced graphene oxide flakes in composites based on polystyrene. Materials 2021;14:2519.

35. Zhou X, Liu Z. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem Commun 2010;46:2611-3.

36. Cai C, Sang N, Shen Z, Zhao X. Facile and size-controllable preparation of graphene oxide nanosheets using high shear method and ultrasonic method. J Exp Nanosci 2017;12:247-62.

37. Klemeyer L, Park H, Huang J. Geometry-dependent thermal reduction of graphene oxide solid. ACS Materials Lett 2021;3:511-5.

38. Mcallister MJ, Li J, Adamson DH, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 2007;19:4396-404.

39. Bai H, Li C, Shi G. Functional composite materials based on chemically converted graphene. Adv Mater 2011;23:1089-115.

40. Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 2010;114:832-42.

41. Kim MC, Hwang GS, Ruoff RS. Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys 2009;131:064704.

42. Shin HJ, Kim KK, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 2009;19:1987-92.

43. Pham VH, Hur SH, Kim EJ, Kim BS, Chung JS. Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 2013;49:6665-7.

44. Ambrosi A, Chua CK, Bonanni A, Pumera M. Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem Mater 2012;24:2292-8.

45. Pei S, Zhao J, Du J, Ren W, Cheng H. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010;48:4466-74.

46. Pham VH, Cuong TV, Nguyen-Phan TD, et al. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem Commun 2010;46:4375-7.

47. Mao S, Yu K, Cui S, Bo Z, Lu G, Chen J. A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 2011;3:2849-53.

48. Lei Z, Lu L, Zhao XS. The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 2012;5:6391-9.

49. Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 2008;112:8192-5.

50. Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010;4:2429-37.

51. Fan Z, Wang K, Wei T, Yan J, Song L, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010;48:1686-9.

52. Fan ZJ, Kai W, Yan J, et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 2011;5:191-8.

53. Mei X, Ouyang J. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 2011;49:5389-97.

54. Fernández-merino MJ, Guardia L, Paredes JI, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 2010;114:6426-32.

55. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008;2:463-70.

56. Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008;8:323-7.

57. Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 2009;131:15939-44.

58. Hun S. Thermal Reduction of Graphene Oxide. In: Mikhailov S, editor. Physics and applications of graphene - experiments. InTech; 2011. Available from: https://www.intechopen.com/books/57. [Last accessed on 20 Jul 2023].

59. Wang H, Robinson JT, Li X, Dai H. Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 2009;131:9910-1.

60. Zhou Y, Bao Q, Tang LA, Zhong Y, Loh KP. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 2009;21:2950-6.

61. Zhou M, Wang Y, Zhai Y, et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry 2009;15:6116-20.

62. Dubin S, Gilje S, Wang K, et al. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 2010;4:3845-52.

63. Shao Y, Wang J, Engelhard M, Wang C, Lin Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 2010;20:743-8.

64. Ramesha GK, Sampath S. Electrochemical reduction of oriented graphene oxide films: an in situ raman spectroelectrochemical study. J Phys Chem C 2009;113:7985-9.

65. An SJ, Zhu Y, Lee SH, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett 2010;1:1259-63.

66. Williams G, Kamat PV. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009;25:13869-73.

67. Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 1993;93:267-300.

68. Ng YH, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 2010;1:2607-12.

69. López V, Sundaram RS, Gómez-navarro C, et al. Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers. Adv Mater 2009;21:4683-6.

70. Dai B, Fu L, Liao L, et al. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res 2011;4:434-9.

71. Wang B, Pantelides ST. Controllable healing of defects and nitrogen doping of graphene by CO and NO molecules. Phys Rev B 2011;83:245403.

72. Shi Y, Xiong D, Li J, Wang K, Wang N. In situ repair of graphene defects and enhancement of its reinforcement effect in polyvinyl alcohol hydrogels. RSC Adv 2017;7:1045-55.

73. Park OK, Choi YM, Hwang JY, et al. Defect healing of reduced graphene oxide via intramolecular cross-dehydrogenative coupling. Nanotechnology 2013;24:185604.

74. Zhao J, Pei S, Ren W, Gao L, Cheng HM. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010;4:5245-52.

75. Xu Y, Sheng K, Li C, Shi G. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem 2011;21:7376-80.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/