REFERENCES

1. Haddaway NR, Cooke SJ, Lesser P, et al. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social-ecological systems in Arctic and boreal regions: a systematic map protocol. Environ Evid 2019;8:1-11.

2. Medina D, Anderson CG. A review of the cyanidation treatment of copper-gold ores and concentrates. Metals 2020;10:897.

3. Rzymski P, Klimaszyk P, Marszelewski W, et al. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania. Environ Sci Pollut Res Int 2017;24:21445-58.

4. Ferreira G, Critelli J. China’s global monopoly on rare-earth elements. US Army War College Q Param 2022;52:57-72.

5. André G, Godin M. Child labour, agency and family dynamics: the case of mining in Katanga (DRC). Childhood 2014;21:161-74.

6. Hein JR, Mizell K, Koschinsky A, Conrad TT. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 2013;51:1-14.

7. Papavasileiou KA. Critical review on evaluation of the marine resources mining versus the land-based ones for REE. Mater Proc 2021;5:112.

8. Josso P, Roberts S, Teagle DAH, et al. Ex-traction and separation of rare earth elements from hydrothermal metalliferous sediments. Miner Eng 2018;118:106-21.

9. Heffernan O. Scientists track damage from controversial deep-sea mining method. Nature 2019;567:294.

10. Balaram V. Determination of precious metal concentrations in polymetallic nodule reference sample from the Indian Ocean by ICP-MS. Mar Georesour Geotec 1999;17:17-26.

11. Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 2019;10:1285-303.

12. Aitken F, Foulc JN. From deep sea to laboratory 1: the first explorations of the deep sea by HMS challenger (1872-1876). John Wiley & Sons; 2019.

13. Lusty PAJ, Hein JR, Josso P. Formation and occurrence of ferromanganese crusts: earth’s storehouse for critical metals. Elements 2018;14:313-8.

14. Dutkiewicz A, Judge A, Müller RD. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean. Geology 2020;48:293-7.

15. Shulga N, Abramov S, Klyukina, A. et al. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci Rep 2022;12:21967.

16. Yeo IA, Dobson K, Josso P, et al. Assessment of the mineral resource potential of Atlantic ferromanganese crusts based on their growth history, microstructure, and texture. Minerals 2018;8:327.

17. Sadler PM. Thesignificance of time scale for the rate of accretion of marine manganese nodules and crusts. Mar Geol 1980;35:M27-32.

18. Levin L A, Mengerink K, Gjerde K M, et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar Policy 2016;74:245-59.

19. Balaram V. Potential future alternative resources for rare earth elements: opportunities and challenges. Minerals 2023;13:425.

20. Sattarova V, Astakhov A, Aksentov K, et al. Geochemistry of the Laptev and East Siberian seas sediments with emphasis on rare-earth elements: application for sediment sources and paleoceanography. Cont Shelf Res 2023;254:104907.

21. Sa R, Sun X, He G, et al. Enrichment of rare earth elements in siliceous sediments under slow deposition: a case study of the central North Pacific. Ore Geol Rev 2018;94:12-23.

22. Balaram V, Satyanarayanan M, Murthy PK, Mohapatra C, Prasad KL. Chemical characterization of cobalt crust from afanasy-nikitin seamount in the eastern indian ocean by inductively coupled plasma time-of-flight mass spectrometry. Mapan 2013;28:63-77.

23. Balaram V, Banakar VK, Subramanyam KSV, et al. Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean. Available from: https://www.jstor.org/stable/24089153 [Last accessed on 28 Apr 2023].

24. Cui Y, Liu J, Ren X, Shi X. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount. J Rare Earths 2009;27:169-76.

25. Nath B, Balaram V, Sudhakar M, Plüger W. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Mar Chem 1992;38:185-208.

26. Balaram V, Anjaiah KV, Reddy MRP. Comparative study on the trace and rare earth element analysis of an Indian polymetallic nodule reference sample by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Analyst 1995;120:1401.

27. Gonzalez FJ, Somoza L, Maldonado A, et al. High technology elements in Co-rich ferromanganese crusts from the Scotia Sea. Available from: https://core.ac.uk/download/pdf/19714312.pdf [Last accessed on 28 Apr 2023].

28. Hoagland P, Beaulieu S, Tivey MA, et al. Deep-sea mining of seafloor massive sulfides. Mar Policy 2010;34:728-32.

29. Paropkari AL, Ray D, Balaram V, et al. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: the geochemical perspectives. J Asian Earth Sci 2010;38:121-30.

30. Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geosci 2011;4:535-9.

31. Yamazaki T, Nakatani N, Arai R, Sekimoto T, Katayama H. Combined mining and pulp-lifting of ferromanganese nodules and rare-earth element-rich mud around minamitorishima island in the Western North Pacific: a prefeasibility study. Minerals 2021;11:310.

32. Zhong Y, Chen Z, Gonzalez FJ, et al. Rare earth elements and yttrium in ferromanganese deposits from the South China Sea: distribution, composition and resource considerations. Acta Oceanol Sin 2018;37:41-54.

33. Yasukawa K, Nakamura K, Fujinaga K, et al. Rare-earth, major, and trace element geochemistry of deep-sea sediments in the Indian Ocean: implications for the potential distribution of REY-rich mud in the Indian Ocean. Geochem J 2015;49:621-35.

34. Surya Prakash L, Ray D, Paropkari AL, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits. Chem Geol 2012;312-313:127-37.

35. Charlu T K, Kalluraya V K K. Ferromanganese encrustation from Lakshadweep area, Arabia Sea. Available from: https://indianjournalofmarketing.com/index.php/jgsi/article/view/68307 [Last accessed on 28 Apr 2023].

36. Dinesh AC, Nisha NV, Varghese S, et al. Extensive occurrence of Fe-Mn crusts and nodules on seamounts in the southern Andaman Sea, India. Curr Sci 2020;119:704-8.

37. Kim MG, Hyeong K, Yoo CM. Distribution of rare earth elements and yttrium in sediments from the clarion-clipperton fracture zone, Northeastern Pacific Ocean. Geochem Geophys Geosyst 2022:23.

38. Toro N, Jeldres RI, Órdenes JA, Robles P, Navarra A. Manganese nodules in Chile, an alternative for the production of co and mn in the future - a review. Minerals 2020;10:674.

39. SPC. Deep sea minerals: manganese nodules, a physical, biological, environmental, and technical review. Available from: https://static1.squarespace.com/static/5cca30fab2cf793ec6d94096/t/5d9e42fd9ba4e7058d7e68a2/1570653017813/DSMvol1B_screen.pdf [Last accessed on 28 Apr 2023].

40. Qiu Z, Tao C, Ma W, et al. Material source of sediments from West Clarion-Clipperton Zone (Pacific): evidence from rare earth element geochemistry and clay minerals compositions. JMSE 2022;10:1052.

41. Takaya Y, Yasukawa K, Kawasaki T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci Rep 2018;8:5763.

42. Bu W, Shi X, Peng J, Qi L. Geochemical characteristics of seamount ferromanganese nodules from mid-Pacific Ocean. Chin Sci Bull 2003;48:98-105.

43. Marino E, González FJ, Kuhn T, et al. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the canary island seamounts and their influence in the metal recovery rate with hydrometallurgical methods. Minerals 2019;9:439.

44. Halbach PE, Jahn A, Cherkashov G. Marine co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources. In: Sharma R, editor. Deep-Sea Mining. Cham: Springer International Publishing; 2017. pp. 65-141.

45. Halbach P, Marbler H. Marine ferromanganese crusts: contents, distribution and enrichment of strategic minor and trace elements. Bundesanstalt für Geowissenschaften und Rohstoffe; 2009. pp. 1-73.

46. Hein JR, Koschinsk A, Bau M, Manheim FT, Kang J, Roberts L. Cobalt-rich ferromanganese crusts in the Pacific. Handbook of marine mineral deposits. Routledge; 2017. pp. 239-79.

47. Banakar VK, Hein JR. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Mar Geol 2000;162:529-40.

48. Piper DZ. Rare earth elements in ferromanganese nodules and other marine phases. Geochim Cosmochim Acta 1974;38:1007-22.

49. Kuhn T, Wegorzewski A, Rühlemann C, Vink A. Correction to: composition, formation, and occurrence of polymetallic nodules. In: Sharma R, editor. Deep-Sea Mining. Cham: Springer International Publishing; 2017. pp. E1-E1.

50. Li D, Fu Y, Sun X, Wei Z. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility. Ore Geol Rev 2020;118:103371.

51. Sakellariadou F, Gonzalez FJ, Hein JR, Rincón-tomás B, Arvanitidis N, Kuhn T. Seabed mining and blue growth: exploring the potential of marine mineral deposits as a sustainable source of rare earth elements (MaREEs) (IUPAC Technical Report). Pure Appl Chem 2022;94:329-51.

52. Mizell K, Hein JR, Au M, Gartman A. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules. In: Sharma R, editor. Perspectives on Deep-Sea Mining. Cham: Springer International Publishing; 2022. pp. 53-80.

53. Hein JR, Koschinsky A, Halliday AN. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium. Geochim Cosmochim Acta 2003;67:1117-27.

54. Rajani PR, Manoj R, Joshi R, Jishnu B, Nagasundaram M. Base metals- and Lithium- rich ferromanganese oxide deposits from the South Andaman Sea, Northeastern Indian Ocean: mode of occurrence and genesis. J Asian Earth Sci 2022;234:105272.

55. Zawadzki D, Maciąg Ł, Blasco I, et al. Geochemistry and mineralogy of ferromanganese crusts from the western Cocos-Nazca spreading centre, Pacific. Minerals 2022;12:538.

56. Herzig PM. Seafloor massive sulfide deposits and hydrothermal systems. In: Nordquist MH, Moore JN, Heidar T, editors. Legal and Scientific Aspects of Continental Shelf Limits. Brill | Nijhoff; 2004. pp. 431-56.

57. Aryanto NC, Kurnio H. Tectonics of volcanogenic massive sulphide (VMS) deposits at flores back arc basin: a review. BoMG 2020:35.

58. Clague DA, Batiza R, Head JW, Davis AS. Pyroclastic and hydroclastic deposits on Loihi Seamount, Hawaii. In: White JDL, Smellie JL, Clague DA, editors. Explosive Subaqueous Volcanism. Washington: American Geophysical Union; 2003. pp. 73-95.

59. Francheteau J, Needham HD, Choukroune P, et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature 1979;277:523-8.

60. Cherkashev GA, Ivanov VN, Bel’tenev VI, et al. Massive sulfide ores of the northern equatorial Mid-Atlantic Ridge. Oceanology 2013;53:607-19.

61. . John Kurian P, Roy P. Deep-sea mineral resources and the Indian perspective. In: Gahalaut VK, Rajeevan M, editors. Social and Economic Impact of Earth Sciences. Singapore: Springer Nature; 2023. pp. 325-49.

62. Hannington MD, De Ronde CEJ, Petersen S. Sea-floor tectonics and submarine hydrothermal systems. One Hundredth Anniversary Volume. Society of Economic Geologists; 2005.

63. Gena K. Deep sea mining of submarine hydrothermal deposits and its possible environmental impact in Manus Basin, Papua New Guinea. Procedia Earth Planet Sci 2013;6:226-33.

64. Dodd MS, Papineau D, Grenne T, et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 2017;543:60-4.

65. Franklin JM, Gibson HL, Jonasson IR, Galley AG. Volcanogenic massive sulfide deposits: Economic Geology 100th Anniversary Volume 2005;523-560.

66. Cherkashov G. Seafloor massive sulfide deposits: distribution and prospecting. In: Sharma R, editor. Deep-Sea Mining. Cham: Springer International Publishing; 2017. pp. 143-64.

67. Herzig PM, Hannington MD. Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 1995;10:95-115.

68. Pašava J, Vymazalová A, Petersen S, Herzig P. PGE distribution in massive sulfides from the PACMANUS hydrothermal field, eastern Manus basin, Papua New Guinea: implications for PGE enrichment in some ancient volcanogenic massive sulfide deposits. Miner Deposita 2004;39:784-92.

69. Kalangutkar NG, Amonkar AA, Iyer SD. The blue economy paradigm and seafloor massive sulfides along the Indian ocean ridge systems. Global Blue Economy. CRC Press; 2022. pp. 285-308.

70. Kuhn T, Bau M, Blum N, Halbach P. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge. Earth Planet Sci Lett 1998;163:207-20.

71. Koschinsky A, Hein JR. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 2003;198:331-51.

72. Marino E, González F, Somoza L, et al. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic). Ore Geol Rev 2017;87:41-61.

73. Halbach P, Kriete C, Prause B, Puteanus D. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts. Chem Geol 1989;76:95-106.

74. Balaram V, Mathur R, Banakar VK, et al. Determination of the platinum-group elements and gold in manganese nodule reference samples by nickel sulfide fire-assay and Te-coprecipitation with ICP-MS. Available from: https://pubs.er.usgs.gov/publication/70029015 [Last accessed on 28 Apr 2023].

75. Ren J, Liu Y, Wang F, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments. Minerals 2021;11:196.

76. Sujith PP, Ramanan D, Gonsalves MJBD, Lokabharathi PA. Microbial activity promotes the enrichment of cobalt over nickel on hydrogenetic ferromanganese crusts. Mar Georesources Geotechnol 2017;35:1158-67.

77. Hein JR, Koschinsky A. Deep-ocean ferromanganese crusts and nodules; 2014.

78. Liao J, Chen J, Sun X, et al. Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments. Chem Geol 2022;595:120792.

79. Ohta J, Yasukawa K, Nakamura K, et al. Geological features and resource potential of deep-sea mud highly enriched in rare-earth elements in the Central Pacific Basin and the Penrhyn Basin. Ore Geol Rev 2021;139:104440.

80. Fujinaga K, Nakamura K, Ohta J, et al. Umber as a lithified REY-rich mud in Japanese accretionary complexes and its implications for the osmium isotopic composition of middle cretaceous seawater. Ore Geol Rev 2022;142:104683.

81. Yasukawa K, Liu H, Fujinaga K, et al. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean. J Asian Earth Sci 2014;93:25-36.

82. Iijima K, Yasukawa K, Fujinaga K, et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean. Geochem J 2016;50:557-73.

83. Hein J, Koschinsky A, Mikesell M, Mizell K, Glenn C, Wood R. Marine phosphorites as potential resources for heavy rare earth elements and yttrium. Minerals 2016;6:88.

84. Kolodny Y. Are marine phosphorites forming today ? Nature 1969;224:1017-9.

85. Wang P, Li Q, Li C. Hydrocarbon and mineral resources. Geology of the China Seas. Elsevier; 2014. pp. 571-641.

86. Ritterbush SW. Marine resources and the potential for conflict in the south china sea. Available from: http://hdl.handle.net/10427/76180 [Last accessed on 28 Apr 2023].

87. González FJ, Somoza L, Hein JR, et al. Phosphorites, co-rich Mn nodules, and Fe-Mn crusts from Galicia Bank, NE Atlantic: reflections of Cenozoic tectonics and paleoceanography: mineralizations from Galicia Bank. Geochem Geophys Geosyst 2016;17:346-74.

88. Emsbo P, McLaughlin PI, Breit GN, et al. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Res 2015;27:776-85.

89. USGS.Global marine mineral resources. Available from: https://www.usgs.gov/centers/pcmsc/science/global-marine-mineral-resources [Last accessed on 28 Apr 2023].

90. Miller KA, Thompson KF, Johnston P, Santillo D. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Front Mar Sci 2018;4:418.

91. Turner PJ. Deep-sea mining and environmental management. Encyclopedia of Ocean Sciences. Elsevier; 2019. pp. 507-15.

92. Sharma R. Deep-sea mining: economic, technical, technological and environmental considerations for sustainable development. Mar Technol Soc J 2011;45:28-41.

93. Hein J, Koschinsky A. Deep-ocean ferromanganese crusts and nodules. Treatise on Geochemistry. Elsevier; 2014. pp. 273-91.

94. Xie C, Wang L, Yang N, et al. A compact design of underwater mining vehicle for the cobalt-rich crust with general support vessel part a: prototype and tests. JMSE 2022;10:135.

95. Obhođaš J, Sudac D, Meric I, et al. In-situ measurements of rare earth elements in deep sea sediments using nuclear methods. Sci Rep 2018;8:4925.

96. Balaram V. Rare earth element deposits: sources, and exploration strategies. J Geol Soc India 2022;98:1210-6.

97. Balaram V, Sawant SS. Indicator minerals, pathfinder elements, and portable analytical instruments in mineral exploration studies. Minerals 2022;12:394.

98. Liu C, Guo J, Tian Y, et al. Development and field tests of a deep-sea laser-induced breakdown spectroscopy (LIBS) system for solid sample analysis in seawater. Sensors 2020;20:7341.

99. Muñoz-Royo C, Ouillon R, El Mousadik S, Alford MH, Peacock T. An in situ study of abyssal turbidity-current sediment plumes generated by a deep seabed polymetallic nodule mining preprototype collector vehicle. Sci Adv 2022;8:eabn1219.

100. González FJ, Medialdea T, Schiellerup H, et al. MINDeSEA: exploring seabed mineral deposits in European seas, metallogeny and geological potential for strategic and critical raw materials. Spec Publ 2023;526:SP526-2022.

101. Leal Filho W, Abubakar I, Nunes C, et al. Deep seabed mining: a note on some potentials and risks to the sustainable mineral extraction from the oceans. JMSE 2021;9:521.

102. Chin A, Hari K. Predicting the impacts of mining of deep-sea polymetallic nodules in the Pacific Ocean: a review of scientific literature. Available from: https://miningwatch.ca/sites/default/files/nodule_mining_in_the_pacific_ocean.pdf [Last accessed on 28 Apr 2023].

103. Gollner S, Kaiser S, Menzel L, et al. Resilience of benthic deep-sea fauna to mining activities. Mar Environ Res 2017;129:76-101.

104. Burns R E, Erickson B H, Lavelle J W, Ozturgut E. Observation and measurements during the monitoring of deep ocean manganese nodule mining tests in the North Pacific, University of California Libraries; 1978. pp. 140.

105. Ozturgut E, Lavelle JW, Steffin O, Swift S A. Environmental investigations during manganese nodule mining tests in the north equatorial Pacific in November 1978; 1980. pp. 1-48.

106. Fukushima T. .

107. Sharma R, Smith S. Deep-sea mining and the environment: an introduction. In: Sharma R, editor. Environmental issues of deep-sea mining. Cham: Springer International Publishing; 2019. pp. 3-22.

108. Foell EJ, Thiel H, Schriever G. .

109. Gausepohl F, Hennke A, Schoening T, Köser K, Greinert J. Scars in the abyss: reconstructing sequence, location and temporal change of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin. Biogeosciences 2020;17:1463-93.

110. Yoerger DR, Govindarajan AF, Howland JC, et al. A hybrid underwater robot for multidisciplinary investigation of the ocean twilight zone. Sci Robot 2021;6:eabe1901.

111. Zhang T, Li Q, Li Y, Liu X. Underwater optical image restoration method for natural/artificial light. JMSE 2023;11:470.

112. Jones DO, Kaiser S, Sweetman AK, et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One 2017;12:e0171750.

113. Showstack R. Momentum grows for mapping the seafloor. Eos 2019:100.

114. Toro N, Gálvez E, Saldaña M, Jeldres RI. Submarine mineral resources: a potential solution to political conflicts and global warming. Miner Eng 2022;179:107441.

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/