REFERENCES
1. Pető J, Ollár T, Vancsó P, et al. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat Chem 2018;10:1246-51.
2. Yuan Y, Guo R, Hong L, et al. Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;611:125836.
3. Liu G, Robertson AW, Li MM, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat Chem 2017;9:810-6.
4. Yuan Y, Yang B, Jia F, Song S. Reduction mechanism of Au metal ions into Au nanoparticles on molybdenum disulfide. Nanoscale 2019;11:9488-97.
5. Xia D(, Gong F, Pei X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review. Chemical Engineering Journal 2018;348:908-28.
6. Zhang J, Wang T, Liu P, et al. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ Sci 2016;9:2789-93.
7. Zhu H, Gan X, Mccreary A, Lv R, Lin Z, Terrones M. Heteroatom doping of two-dimensional materials: from graphene to chalcogenides. Nano Today 2020;30:100829.
8. Ge J, Ou EC, Yu RQ, Chu X. A novel aptameric nanobiosensor based on the self-assembled DNA-MoS2 nanosheet architecture for biomolecule detection. J Mater Chem B 2014;2:625-8.
9. Wu J, Zhang X, Ma X, Qiu Y, Zhang T. High quantum-yield luminescent MoS2 quantum dots with variable light emission created via direct ultrasonic exfoliation of MoS 2 nanosheets. RSC Adv 2015;5:95178-82.
10. Wang Y, Ni Y. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem 2014;86:7463-70.
11. Dai W, Dong H, Fugetsu B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 2015;11:4158-64.
12. Ali J, Siddiqui GU, Choi KH, Jang Y, Lee K. Fabrication of blue luminescent MoS2 quantum dots by wet grinding assisted co-solvent sonication. Journal of Luminescence 2016;169:342-7.
13. Dong H, Tang S, Hao Y, et al. Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl Mater Interfaces 2016;8:3107-14.
14. Xu S, Li D, Wu P. One-pot, facile, and versatile synthesis of monolayer MoS2/WS 2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 2015;25:1127-36.
15. Wang N, Wei F, Qi Y, et al. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling. ACS Appl Mater Interfaces 2014;6:19888-94.
16. Qiao W, Yan S, Song X, et al. Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution. RSC Adv 2015;5:97696-701.
18. Ataca C, Şahin H, Ciraci S. Stable, Single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 2012;116:8983-99.
19. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett 2011;11:5111-6.
20. Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 2010;105:136805.
21. Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2. Phys Rev B 2011:83.
22. Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 2010;10:1271-5.
23. Ataca C, Ciraci S. Functionalization of single-layer MoS2 honeycomb structures. J Phys Chem C 2011;115:13303-11.
24. Mann J, Sun D, Ma Q, et al. Facile growth of monolayer MoS2 film areas on SiO2. Eur Phys J B 2013:86.
25. Kadantsev ES, Hawrylak P. Electronic structure of a single MoS2 monolayer. Solid State Communications 2012;152:909-13.
26. Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 2012:86.
27. Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011;5:9703-9.
28. Duerloo KN, Ong MT, Reed EJ. Intrinsic piezoelectricity in two-dimensional materials. J Phys Chem Lett 2012;3:2871-6.
29. Tiras E, Ardali S, Tiras T, et al. Effective mass of electron in monolayer graphene: electron-phonon interaction. Journal of Applied Physics 2013;113:043708.
30. Feng J, Qian X, Huang C, Li J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photon 2012;6:866-72.
31. Zhang L, Wu HB, Yan Y, Wang X, Lou XW. Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ Sci 2014;7:3302-6.
32. Liu N, Guo Y, Yang X, et al. Microwave-assisted reactant-protecting strategy toward efficient MoS2 electrocatalysts in hydrogen evolution reaction. ACS Appl Mater Interfaces 2015;7:23741-9.
33. Li BL, Setyawati MI, Zou HL, et al. Emerging 0D Transition-metal dichalcogenides for sensors, biomedicine, and clean energy. Small 2017;13:1700527.
34. Guo Y, Li J. MoS2 quantum dots: synthesis, properties and biological applications. Mater Sci Eng C Mater Biol Appl 2020;109:110511.
35. Zhang W, Du J, Liu Z, et al. Production of carbon dots during the liquid phase exfoliation of MoS2 quantum dots. Carbon 2019;155:243-9.
36. Gopalakrishnan D, Damien D, Shaijumon MM. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014;8:5297-303.
37. Wang T, Liu L, Zhu Z, et al. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode. Energy Environ Sci 2013;6:625-33.
38. Meng X, Li Z, Zeng H, Chen J, Zhang Z. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection. Applied Catalysis B: Environmental 2017;210:160-72.
39. Gopalakrishnan D, Damien D, Li B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem Commun (Camb) 2015;51:6293-6.
40. Cao X, Ding C, Zhang C, et al. Transition metal dichalcogenide quantum dots: synthesis, photoluminescence and biological applications. J Mater Chem B 2018;6:8011-36.
41. Shrivastava M, Kumari R, Parra MR, Pandey P, Siddiqui H, Haque FZ. Electrochemical synthesis of MoS2 quantum dots embedded nanostructured porous silicon with enhanced electroluminescence property. Optical Materials 2017;73:763-71.
42. Li BL, Chen LX, Zou HL, Lei JL, Luo HQ, Li NB. Electrochemically induced Fenton reaction of few-layer MoS2 nanosheets: preparation of luminescent quantum dots via a transition of nanoporous morphology. Nanoscale 2014;6:9831-8.
43. Qiao W, Yan S, Song X, et al. Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Applied Surface Science 2015;359:130-6.
44. Grayfer ED, Kozlova MN, Fedorov VE. Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv Colloid Interface Sci 2017;245:40-61.
45. An S, Park DY, Lee C, et al. Facile preparation of molybdenum disulfide quantum dots using a femtosecond laser. Applied Surface Science 2020;511:145507.
46. Ren X, Pang L, Zhang Y, Ren X, Fan H, Liu S. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A 2015;3:10693-7.
47. Mohanty B, Ghorbani-asl M, Kretschmer S, et al. MoS2 quantum dots as efficient catalyst materials for the oxygen evolution reaction. ACS Catal 2018;8:1683-9.
48. Gan X, Zhao H, Quan X. Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron 2017;89:56-71.
49. Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 2014;47:1067-75.
51. Ghatak S, Pal AN, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011;5:7707-12.
52. Ciesielski A, Samorì P. Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 2014;43:381-98.
53. Tang Z, Wei Q, Guo B. A generic solvent exchange method to disperse MoS2 in organic solvents to ease the solution process. Chem Commun (Camb) 2014;50:3934-7.
54. Li Y, Yin X, Wu W. Preparation of few-layer MoS2 nanosheets via an efficient shearing exfoliation method. Ind Eng Chem Res 2018;57:2838-46.
55. Gupta A, Arunachalam V, Vasudevan S. Water dispersible, positively and negatively charged MoS2 Nanosheets: surface chemistry and the role of surfactant binding. J Phys Chem Lett 2015;6:739-44.
56. Guardia L, Paredes JI, Rozada R, Villar-rodil S, Martínez-alonso A, Tascón JMD. Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants. RSC Adv 2014;4:14115-27.
57. Liu Y, Ren L, Qi X, et al. Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. Journal of Alloys and Compounds 2013;571:37-42.
59. Yeon C, Yun SJ, Yang J, Youn DH, Lim JW. Na-cation-assisted exfoliation of MX2 (M = Mo, W; X = S, Se) Nanosheets in an Aqueous medium with the aid of a polymeric surfactant for flexible polymer-nanocomposite memory applications. Small 2018;14:1702747.
60. Yu H, Zhu H, Dargusch M, Huang Y. A reliable and highly efficient exfoliation method for water-dispersible MoS2 nanosheet. J Colloid Interface Sci 2018;514:642-7.
61. Lee SK, Chu D, Song DY, Pak SW, Kim EK. Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method. Nanotechnology 2017;28:195703.
62. You X, Liu N, Lee CJ, Pak JJ. An electrochemical route to MoS2 nanosheets for device applications. Materials Letters 2014;121:31-5.
63. Zeng Z, Yin Z, Huang X, et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem 2011;123:11289-93.
64. Chen F, Jiang X, Shao J, Fu L, Zhao S, Su W. The synthesis and identification of complete stacking bilayer MoS2 flakes with unconventional shapes via chemical vapor deposition. Superlattices and Microstructures 2021;158:107023.
65. Pondick JV, Woods JM, Xing J, Zhou Y, Cha JJ. Stepwise sulfurization from MoO3 to MoS2 via chemical vapor deposition. ACS Appl Nano Mater 2018;1:5655-61.
66. Perkgoz NK, Bay M. Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nanomicro Lett 2016;8:70-9.
67. Chowdhury S, Roy A, Liu C, et al. Two-step growth of uniform monolayer MoS2 nanosheets by metal-organic chemical vapor deposition. ACS Omega 2021;6:10343-51.
68. Liu L, Qiu H, Wang J, Xu G, Jiao L. Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition. Nanoscale 2016;8:4486-90.
69. Fei L, Lei S, Zhang WB, et al. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat Commun 2016;7:12206.
70. Lee S, Son Y, Choi J, Kim S, Park S. Morphology and catalytic performance of MoS2 hydrothermally synthesized at various pH values. Catalysts 2021;11:1229.
71. Song T, Fu L, Wan N, Wu J, Xie J. Hydrothermal synthesis of MoS2 nanoflowers for an efficient microbial electrosynthesis of acetate from CO2. ;41:101231.
72. Wu D, Zhang C, Xu S, et al. Fabrication and enhanced supercapacitance of hollow nanostructured MoS2 prepared by a CATB-assisted hydrothermal process. Materials Letters 2016;184:96-9.
73. Huang Z, Qi Y, Yu D, Zhan J. Radar-like MoS2 nanoparticles as a highly efficient 808 nm laser-induced photothermal agent for cancer therapy. RSC Adv 2016;6:31031-6.
74. Chen J, Xu Z, Hu Y, Yi M. PEG-assisted solvothermal synthesis of MoS2 nanosheets with enhanced tribological property. Lubrication Science 2020;32:273-82.
75. Wang Q, Jia F, Huang A, et al. MoS2@sponge with double layer structure for high-efficiency solar desalination. Desalination 2020;481:114359.
76. Chen P, Zeng S, Zhao Y, Kang S, Zhang T, Song S. Synthesis of unique-morphological hollow microspheres of MoS2@montmorillonite nanosheets for the enhancement of photocatalytic activity and cycle stability. Journal of Materials Science & Technology 2020;41:88-97.
77. Zhu L, Ji J, Liu J, et al. Designing 3D-MoS2 Sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew Chem 2020;132:14072-80.
78. Sun K, Mao S, Zhan W, Liu C, Jia F, Song S. In-situ reduction of Au(S2O3)23- for efficient recovery of gold with magnetically separable shell-core structured MoS2@Fe3O4 composite. Hydrometallurgy 2020;198:105514.
79. Zhang Y, Zuo L, Huang Y, et al. In-situ growth of few-layered MoS2 nanosheets on highly porous carbon aerogel as advanced electrocatalysts for hydrogen evolution reaction. ACS Sustainable Chem Eng 2015;3:3140-8.
80. Xie Y, Guo F, Mao J, et al. Freestanding MoS2@carbonized cellulose aerogel derived from waste cotton for sustainable and highly efficient particulate matter capturing. Separation and Purification Technology 2021;254:117571.
81. Kim K, Tiwari AP, Hyun G, Novak TG, Jeon S. Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction. International Journal of Hydrogen Energy 2019;44:28143-50.
82. Wang W, Yang P, Jian Z, Li H, Xing Y, Zhang S. Rational design of a 3D MoS2/dual-channel graphene framework hybrid as a free-standing electrode for enhanced lithium storage. J Mater Chem A 2018;6:13797-805.
83. Xiang Z, Zhang Z, Xu X, Zhang Q, Yuan C. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon 2016;98:84-9.
84. Geng H, Zhang X, Xie W, et al. Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J Colloid Interface Sci 2022;609:33-42.
85. Zhou J, Qin J, Zhang X, et al. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015;9:3837-48.
86. Li L, Chen C, Su J, et al. Three-dimensional MoSx (1 < x < 2) nanosheets decorated graphene aerogel for lithium-oxygen batteries. J Mater Chem A 2016;4:10986-91.
87. Yang M, Jeong J, Huh YS, Choi BG. High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Composites Science and Technology 2015;121:123-8.
88. Gigot A, Fontana M, Serrapede M, et al. Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl Mater Interfaces 2016;8:32842-52.
89. Yuan J, Zhu J, Wang R, et al. 3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: a free-standing electrode for high-performance lithium/sodium-ion batteries. Chemical Engineering Journal 2020;398:125592.
90. Yuan Y, Lv H, Xu Q, Liu H, Wang Y. A few-layered MoS2 nanosheets/nitrogen-doped graphene 3D aerogel as a high performance and long-term stability supercapacitor electrode. Nanoscale 2019;11:4318-27.
91. Lee WS, Peng E, Loh TA, Huang X, Xue JM. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials. Nanoscale 2016;8:8042-7.
92. Wang S, Wang R, Zhao Q, et al. Freeze-drying induced self-assembly approach for scalable constructing MoS2/graphene hybrid aerogels for lithium-ion batteries. J Colloid Interface Sci 2019;544:37-45.
93. Das S, Ghosh R, Routh P, et al. Conductive MoS2 quantum dot/polyaniline aerogel for enhanced electrocatalytic hydrogen evolution and photoresponse properties. ACS Appl Nano Mater 2018;1:2306-16.
94. Zhang X, Nie Y, Zhang Q, Liang Z, Wang P, Ma Q. Polydopamine nanoparticles@MoS2 nanosheet aerogel-based ECL sensing system for MiRNA-126 detection. Chemical Engineering Journal 2021;411:128428.
95. Jaiswal MK, Carrow JK, Gentry JL, et al. Vacancy-Driven Gelation using defect-rich nanoassemblies of 2D transition metal dichalcogenides and polymeric binder for biomedical applications. Adv Mater 2017;29:1702037.
96. Wang Q, Guo Q, Jia F, Li Y, Song S. Facile preparation of three-dimensional MoS2 aerogels for highly efficient solar desalination. ACS Appl Mater Interfaces 2020;12:32673-80.
97. Yang L, Mukhopadhyay A, Jiao Y, et al. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 2017;9:11452-62.
98. Cheng JB, Zhao HB, Cao M, et al. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl Mater Interfaces 2020;12:26301-12.
99. Jia F, Liu C, Yang B, et al. Thermal modification of the molybdenum disulfide surface for tremendous improvement of Hg2+ adsorption from aqueous solution. ACS Sustainable Chem Eng 2018;6:9065-73.
100. Liu C, Kong D, Hsu PC, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol 2016;11:1098-104.
101. Yao K, Xu Z, Huang J, et al. Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small 2019;15:e1805405.
102. Yang Z, Zhu L, Lv C, et al. Defect engineering of molybdenum disulfide for energy storage. Mater Chem Front 2021;5:5880-96.
103. He Z, Zhao R, Chen X, et al. Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl Mater Interfaces 2018;10:42524-33.
104. Thiruraman JP, Fujisawa K, Danda G, et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS2. Nano Lett 2018;18:1651-9.
105. Zhao G, Deng H, Tyree N, et al. Recent Progress On Irradiation-Induced Defect Engineering Of Two-Dimensional 2H-MoS2 few layers. Applied Sciences 2019;9:678.
106. Mishra P, Tangi M, Ng TK, et al. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Appl Phys Lett 2017;110:012101.
107. Ochedowski O, Marinov K, Wilbs G, et al. Radiation hardness of graphene and MoS2 field effect devices against swift heavy ion irradiation. Journal of Applied Physics 2013;113:214306.
108. Madauß L, Ochedowski O, Lebius H, et al. Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation. 2D Mater 2017;4:015034.
109. Guo H, Sun Y, Zhai P, et al. Swift-heavy ion irradiation-induced latent tracks in few- and mono-layer MoS2. Appl Phys A 2016:122.
110. Mignuzzi S, Pollard AJ, Bonini N, et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys Rev B 2015:91.
111. Chen P, Ni J, Liang Y, Yang B, Jia F, Song S. Piezo-photocatalytic reduction of Au(I) by Defect-Rich MoS2 nanoflowers for efficient gold recovery from a thiosulfate solution. ACS Sustainable Chem Eng 2021;9:589-98.
112. Jayabal S, Saranya G, Wu J, Liu Y, Geng D, Meng X. Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 2017;5:24540-63.
113. Jia F, Liu C, Yang B, Song S. Microscale control of edge defect and oxidation on molybdenum disulfide through thermal treatment in air and nitrogen atmospheres. Applied Surface Science 2018;462:471-9.
114. Liu C, Wang Q, Jia F, Song S. Adsorption of heavy metals on molybdenum disulfide in water: a critical review. Journal of Molecular Liquids 2019;292:111390.
115. Yamamoto S, Kaneo Y, Maeda H. Styrene maleic acid anhydride copolymer (SMA) for the encapsulation of sparingly water-soluble drugs in nanoparticles. Journal of Drug Delivery Science and Technology 2013;23:231-7.
116. Zhou H, Yu F, Liu Y, et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res 2013;6:703-11.
117. Jia F, Sun K, Yang B, Zhang X, Wang Q, Song S. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water. Desalination 2018;446:21-30.
118. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014;8:1102-20.
119. Behura S, Nguyen P, Che S, Debbarma R, Berry V. Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J Am Chem Soc 2015;137:13060-5.
120. Jin H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem Rev 2018;118:6337-408.
121. Luo P, Zhuge F, Zhang Q, et al. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz 2019;4:26-51.
122. Suh J, Park TE, Lin DY, et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett 2014;14:6976-82.
123. Tosun M, Chan L, Amani M, et al. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016;10:6853-60.
124. Xu EZ, Liu HM, Park K, et al. p-Type transition-metal doping of large-area MoS2 thin films grown by chemical vapor deposition. Nanoscale 2017;9:3576-84.
125. Zhang K, Feng S, Wang J, et al. Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett 2015;15:6586-91.
126. Wang J, Fang H, Wang X, Chen X, Lu W, Hu W. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017;13:1700894.
127. Lee S, Lee YT, Park SG, et al. Dimensional crossover transport induced by substitutional atomic doping in SnSe2. Adv Electron Mater 2018;4:1700563.
128. Yazdani S, Yarali M, Cha JJ. Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides. Nano Res 2019;12:2126-39.
129. Li Y, Cain JD, Hanson ED, et al. Au@MoS2 core-shell heterostructures with strong light-matter interactions. Nano Lett 2016;16:7696-702.
130. Kiriya D, Tosun M, Zhao P, Kang JS, Javey A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc 2014;136:7853-6.
131. Zhan W, Yuan Y, Yao X, et al. Efficient recovery of gold(I) from thiosulfate solutions through photocatalytic reduction with Mn(II)-doped MoS2. ACS Sustainable Chem Eng 2021;9:11681-90.
132. Huo N, Konstantatos G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat Commun 2017;8:572.
133. Li Y, Xu CY, Hu P, Zhen L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013;7:7795-804.
134. Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett 2013;13:1991-5.
135. Chang YM, Yang SH, Lin CY, et al. Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv Mater 2018;30:e1706995.
136. Tongay S. Preface to a special topic: 2D materials and applications. Applied Physics Reviews 2018;5:010401.
137. Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 2013;13:2831-6.
138. Nan H, Wang Z, Wang W, et al. Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. ACS Nano 2014;8:5738-45.
139. Lei S, Wang X, Li B, et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat Nanotechnol 2016;11:465-71.
140. Cai L, McClellan CJ, Koh AL, et al. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett 2017;17:3854-61.
141. McDonnell S, Azcatl A, Addou R, et al. Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. ACS Nano 2014;8:6265-72.
142. Sarkar D, Xie X, Kang J, et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett 2015;15:2852-62.
143. Javey A, Tu R, Farmer DB, Guo J, Gordon RG, Dai H. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett 2005;5:345-8.
144. Roncali J. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Acc Chem Res 2009;42:1719-30.
145. Lin J, Zhong J, Zhong S, Li H, Zhang H, Chen W. Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Appl Phys Lett 2013;103:063109.
146. Rai A, Valsaraj A, Movva HC, et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett 2015;15:4329-36.
147. Shi Y, Huang JK, Jin L, et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci Rep 2013;3:1839.
148. Du Y, Liu H, Neal AT, Si M, Ye PD. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett 2013;34:1328-30.
149. Dolui K, Rungger I, Das Pemmaraju C, Sanvito S. Possible doping strategies for MoS2 monolayers: an. ab initio :88.
150. Zhan W, Jia F, Yuan Y, et al. Controllable incorporation of oxygen in MoS2 for efficient adsorption of Hg2+ in aqueous solutions. J Hazard Mater 2020;384:121382.
151. Title RS, Shafer MW. Band structure of the layered transition-metal dichalcogenides: an experimental study by electron paramagnetic resonance on Nb-doped MoS2. Phys Rev Lett 1972;28:808-10.
152. Laskar MR, Nath DN, Ma L, et al. P-type doping of MoS2 thin films using Nb. Appl Phys Lett 2014;104:092104.
153. Gao J, Kim YD, Liang L, et al. Transition-metal substitution doping in synthetic atomically thin semiconductors. Adv Mater 2016;28:9735-43.
154. Lin YC, Dumcenco DO, Komsa HP, et al. Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv Mater 2014;26:2857-61.
155. Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor. Phys Rev B 2013:87.
156. Li H, Duan X, Wu X, et al. Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc 2014;136:3756-9.
157. Ma Q, Isarraraz M, Wang CS, et al. Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 2014;8:4672-7.
158. Zhou W, Hou D, Sang Y, et al. MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J Mater Chem A 2014;2:11358.
159. Qin S, Lei W, Liu D, Chen Y. In-situ and tunable nitrogen-doping of MoS2 nanosheets. Sci Rep 2014;4:7582.
160. Chen M, Nam H, Wi S, et al. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl Phys Lett 2013;103:142110.
161. Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S. Few-layer MoS2 p-Type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016;10:2128-37.
162. Wan J, Lacey SD, Dai J, Bao W, Fuhrer MS, Hu L. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem Soc Rev 2016;45:6742-65.
163. Gao Y, Hu M, Mi B. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science 2014;455:349-56.
164. Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015;9:4611-20.
165. Guo Y, Wei Y, Li H, Zhai T. Layer structured materials for advanced energy storage and conversion. Small 2017;13:1701649.
166. Enyashin AN, Yadgarov L, Houben L, et al. New route for stabilization of 1T-WS2 and MoS2 phases. J Phys Chem C 2011;115:24586-91.
167. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 2013;135:10274-7.
168. Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 2015;10:313-8.
169. Gong Y, Yuan H, Wu CL, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nanotechnol 2018;13:294-9.
170. Koski KJ, Wessells CD, Reed BW, Cha JJ, Kong D, Cui Y. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J Am Chem Soc 2012;134:13773-9.
171. Chen KP, Chung FR, Wang M, Koski KJ. Dual element intercalation into 2D layered Bi2Se3 nanoribbons. J Am Chem Soc 2015;137:5431-7.
172. Kumar P, Skomski R, Pushpa R. Magnetically ordered transition-metal-intercalated WSe2. ACS Omega 2017;2:7985-90.
173. Morosan E, Zandbergen HW, Dennis BS, et al. Superconductivity in CuxTiSe2. Nature Phys 2006;2:544-50.
174. Chen Z, Leng K, Zhao X, et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat Commun 2017;8:14548.
175. Yuwen L, Xu F, Xue B, et al. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014;6:5762-9.
176. Sun K, Jia F, Yang B, Lin C, Li X, Song S. Synergistic effect in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst. Applied Materials Today 2020;18:100453.
177. Guo M, Xing Z, Zhao T, et al. Hollow flower-like polyhedral α-Fe2O3/Defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic-Fenton performance via surface plasmon resonance and photothermal effects. Applied Catalysis B: Environmental 2020;272:118978.
178. Yin Z, Chen B, Bosman M, et al. Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 2014;10:3537-43.
179. Luo Y, Huang D, Li M, et al. MoS2 nanosheet decorated with trace loads of Pt as highly active electrocatalyst for hydrogen evolution reaction. Electrochimica Acta 2016;219:187-93.
180. Sun W, Wang J, Wang K, et al. Turbulence-like Cu/MoS2 films: structure, mechanical and tribological properties. Surface and Coatings Technology 2021;422:127490.
181. Lan S, Jing B, Yu C, et al. Protrudent iron single-atom accelerated interfacial piezoelectric polarization for self-powered water motion triggered fenton-like reaction. Small 2022;18:e2105279.
182. He X, Wu P, Wang S, Wang A, Wang C, Ding P. Inactivation of harmful algae using photocatalysts: Mechanisms and performance. Journal of Cleaner Production 2021;289:125755.
183. Yang X, Chen Z, Zhao W, et al. Recent advances in photodegradation of antibiotic residues in water. Chem Eng J 2021;405:126806.
184. Zhan W, Yuan Y, Yang B, Jia F, Song S. Construction of MoS2 nano-heterojunction via ZnS doping for enhancing in-situ photocatalytic reduction of gold thiosulfate complex. Chemical Engineering Journal 2020;394:124866.
185. Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 2014;24:2421-40.
186. Zhou H, Qu Y, Zeid T, Duan X. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 2012;5:6732.
187. Lu L, Wu B, Shi W, Cheng P. Metal-organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorg Chem Front 2019;6:3456-67.
188. Ma S, Xie J, Wen J, et al. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation. Applied Surface Science 2017;391:580-91.
189. Lu X, Jin Y, Zhang X, et al. Controllable synthesis of graphitic C3N4/ultrathin MoS2 nanosheet hybrid nanostructures with enhanced photocatalytic performance. Dalton Trans 2016;45:15406-14.
190. He M, Sun K, Suryawanshi MP, Li J, Hao X. Interface engineering of p-n heterojunction for kesterite photovoltaics: a progress review. Journal of Energy Chemistry 2021;60:1-8.
191. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694.
192. Yu W, Zhang S, Chen J, et al. Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution. J Mater Chem A 2018;6:15668-74.
193. Low J, Dai B, Tong T, Jiang C, Yu J. In situ irradiated x-ray photoelectron spectroscopy investigation on a direct z-scheme TiO2 /CdS composite film photocatalyst. Adv Mater 2019;31:e1802981.
194. Qi K, Cheng B, Yu J, Ho W. A review on TiO2 -based Z-scheme photocatalysts. Chinese Journal of Catalysis 2017;38:1936-55.
195. Ani I, Akpan U, Olutoye M, Hameed B. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. Journal of Cleaner Production 2018;205:930-54.
196. Xiong T, Wen M, Dong F, et al. Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal. Applied Catalysis B: Environmental 2016;199:87-95.
197. Zhang W, Xiao X, Li Y, Zeng X, Zheng L, Wan C. Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study. Applied Surface Science 2016;389:496-506.
198. Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental 2019;243:556-65.
199. He F, Meng A, Cheng B, Ho W, Yu J. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese Journal of Catalysis 2020;41:9-20.
200. Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem 2020;6:1543-59.
201. He X, Wang A, Wu P, et al. Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: a review. Sci Total Environ 2020;743:140694.
202. Alshamsi HA, Beshkar F, Amiri O, Salavati-Niasari M. Porous hollow Ag/Ag2S/Ag3PO4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation. Chemosphere 2021;274:129765.
203. Fan H, Zhou H, Li W, Gu S, Zhou G. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Applied Surface Science 2020;504:144351.
204. Bartolomeo A. Graphene schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports 2016;606:1-58.
205. Sajan CP, Wageh S, Al-ghamdi AA, Yu J, Cao S. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res 2016;9:3-27.
206. Yu J, Low J, Xiao W, Zhou P, Jaroniec M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 2014;136:8839-42.
207. Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed Engl 2012;51:602-13.
208. Zhang X, Jia F, Yang B, Song S. Oxidation of molybdenum disulfide sheet in water under in situ atomic force microscopy observation. J Phys Chem C 2017;121:9938-43.
209. Zafar F, Wang H, Lv C, et al. Enhancement of GAD storage stability with immobilization on PDA-coated superparamagnetic magnetite nanoparticles. Catalysts 2019;9:969.
210. Wang Y, Zeng S, Sun K, Yang B, Jia F, Song S. Wang Y, Zeng S, Sun K, Yang B, Jia F, Song S. Highly stable MoS2@PDA composite for enhanced reduction of AuCl4-. Chemical Physics Letters 2020;747:137350.
211. Sun K, Mao S, Zhan W, Liu C, Jia F, Song S. In-situ reduction of Au(S2O3)23- for efficient recovery of gold with magnetically separable shell-core structured MoS2@Fe3O4 composite. Hydrometallurgy 2020;198:105514.