REFERENCES

1. UNFCCC. Adoption of the Paris Agreement. Available from: https://documents-dds-ny.un.org/doc/UNDOC/LTD/G15/283/19/PDF/G1528319.pdf?OpenElement [Last accessed on 21 Apr 2022].

2. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM. A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 2014;43:8049-80.

3. Wang F, Dreisinger DB, Jarvis M, Hitchins T. The technology of CO2 sequestration by mineral carbonation: current status and future prospects. Canadian Metallurgical Quarterly 2017;57:46-58.

4. Seifritz W. CO2 disposal by means of silicates. Nature 1990;345:486-486.

5. Wang F, Dreisinger D, Jarvis M, Hitchins T. Kinetic evaluation of mineral carbonation of natural silicate samples. Chemical Engineering Journal 2021;404:126522.

6. Demirbas A. Carbon Dioxide Emissions and Carbonation Sensors. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2007;30:70-8.

7. Olajire AA. A review of mineral carbonation technology in sequestration of CO2. Journal of Petroleum Science and Engineering 2013;109:364-92.

8. Power IM, Harrison AL, Dipple GM, et al. Carbon mineralization: from natural analogues to engineered systems. Reviews in Mineralogy and Geochemistry 2013;77:305-60.

9. McQueen N, Kelemen P, Dipple G, Renforth P, Wilcox J. Ambient weathering of magnesium oxide for CO2 removal from air. Nat Commun 2020;11:3299.

10. Harrison AL, Power IM, Dipple GM. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ Sci Technol 2013;47:126-34.

11. Hamilton JL, Wilson SA, Morgan B, et al. Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. International Journal of Greenhouse Gas Control 2018;71:155-67.

12. Pullin H, Bray AW, Burke IT, et al. Atmospheric carbon capture performance of legacy iron and steel waste. Environ Sci Technol 2019;53:9502-11.

13. Lechat K, Lemieux J, Molson J, Beaudoin G, Hébert R. Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada. International Journal of Greenhouse Gas Control 2016;47:110-21.

14. Wilson SA, Harrison AL, Dipple GM, et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. International Journal of Greenhouse Gas Control 2014;25:121-40.

15. Snæbjörnsdóttir SÓ, Gislason SR, Galeczka IM, Oelkers EH. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland. Geochimica et Cosmochimica Acta 2018;220:348-66.

16. Clark DE, Oelkers EH, Gunnarsson I, et al. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta 2020;279:45-66.

17. Snæbjörnsdóttir SÓ, Oelkers EH, Mesfin K, et al. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. International Journal of Greenhouse Gas Control 2017;58:87-102.

18. Gislason SR, Wolff-boenisch D, Stefansson A, et al. Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control 2010;4:537-45.

19. Pogge von Strandmann PAE, Burton KW, Snæbjörnsdóttir SO, et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat Commun 2019;10:1983.

20. Oelkers EH, Butcher R, Pogge von Strandmann PA, et al. Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland. Geochimica et Cosmochimica Acta 2019;245:542-55.

21. Gunnarsson I, Aradóttir ES, Oelkers EH, et al. The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site. International Journal of Greenhouse Gas Control 2018;79:117-26.

22. Oelkers EH, Gislason SR, Matter J. Mineral carbonation of CO2. Elements 2008;4:333-7.

23. Matter JM, Stute M, Snæbjörnsdottir SÓ, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016;352:1312-4.

24. Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J. Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu Rev Earth Planet Sci 2011;39:545-76.

25. Matter JM, Kelemen PB. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geosci 2009;2:837-41.

26. Wang F, Dreisinger D, Jarvis M, Hitchins T, Dyson D. Quantifying kinetics of mineralization of carbon dioxide by olivine under moderate conditions. Chemical Engineering Journal 2019;360:452-63.

27. Wang F, Dreisinger D, Jarvis M, Hitchins T. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Minerals Engineering 2019;131:185-97.

28. Azdarpour A, Asadullah M, Junin R, Manan M, Hamidi H, Daud ARM. Carbon dioxide mineral carbonation through pH-swing process: a review. Energy Procedia 2014;61:2783-6.

29. Hu J, Liu W, Wang L, et al. Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant. Journal of Energy Chemistry 2017;26:927-35.

30. Oelkers EH, Declercq J, Saldi GD, Gislason SR, Schott J. Olivine dissolution rates: a critical review. Chemical Geology 2018;500:1-19.

31. Farhang F, Rayson M, Brent G, Hodgins T, Stockenhuber M, Kennedy E. Insights into the dissolution kinetics of thermally activated serpentine for CO2 sequestration. Chemical Engineering Journal 2017;330:1174-86.

32. Hänchen M, Prigiobbe V, Storti G, Seward T, Mazzotti M. Dissolution kinetics of fosteritic olivine at 90-150°C including effects of the presence of CO2. Geochimica et Cosmochimica Acta 2006;70:4403-16.

33. Pokrovsky OS, Schott J. Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12. Geochimica et Cosmochimica Acta 2000;64:3313-25.

34. Kelemen PB, Matter J. In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci U S A 2008;105:17295-300.

35. Rajendran S, Nasir S. Mapping of Moho and Moho transition zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique. Tectonophysics 2015;657:63-80.

36. Stubbs AR, Paulo C, Power IM, Wang B, Zeyen N, Wilson SA. Direct measurement of CO2 drawdown in mine wastes and rock powders: implications for enhanced rock weathering. International Journal of Greenhouse Gas Control 2022;113:103554.

37. Nowamooz A, Dupuis JC, Beaudoin G, et al. Atmospheric carbon mineralization in an industrial-scale chrysotile mining waste pile. Environ Sci Technol 2018;52:8050-7.

38. Gras A, Beaudoin G, Molson J, Plante B. Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project, Quebec, Canada. Chemical Geology 2020;546:119661.

39. Hamilton JL, Wilson SA, Morgan B, et al. Nesquehonite sequesters transition metals and CO2 during accelerated carbon mineralisation. International Journal of Greenhouse Gas Control 2016;55:73-81.

40. Hamilton JL, Wilson SA, Morgan B, et al. Accelerating mineral carbonation in ultramafic mine tailings via direct CO2 reaction and heap leaching with potential for base metal enrichment and recovery. Economic Geology 2020;115:303-23.

41. Benhelal E, Rashid M, Holt C, et al. The utilisation of feed and byproducts of mineral carbonation processes as pozzolanic cement replacements. Journal of Cleaner Production 2018;186:499-513.

42. Pan S, Chiang P, Pan W, Kim H. Advances in state-of-art valorization technologies for captured CO2 toward sustainable carbon cycle. Critical Reviews in Environmental Science and Technology 2018;48:471-534.

43. Spangler L, Bear B, Dobeck L, Leonti M, Naberhaus T. Big sky carbon sequestration partnership. Available from: https://www.bigskyco2.org [Last accessed on 21 Apr 2022].

44. Peter. Melt extraction from the mantle beneath mid-ocean ridges. Oceanus 1998;41:23-8. Available from: https://www.whoi.edu/oceanus/feature/melt.

45. Dichicco MC, Laurita S, Paternoster M, Rizzo G, Sinisi R, Mongelli G. Serpentinite carbonation for CO2 sequestration in the southern Apennines: preliminary study. Energy Procedia 2015;76:477-86.

46. Kenarsari SD, Yang D, Jiang G, et al. Review of recent advances in carbon dioxide separation and capture. RSC Adv 2013;3:22739.

47. Ahmadi MA, Pouladi B, Barghi T. Numerical modeling of CO2 injection scenarios in petroleum reservoirs: application to CO2 sequestration and EOR. Journal of Natural Gas Science and Engineering 2016;30:38-49.

48. National Petroleum Council. Meeting the dual challenge: a roadmap to at-scale deployment of carbon capture, use, and storage. Chapter-Nine: CO2 use. Available from: https://dualchallenge.npc.org/files/CCUS-Chap_9-030521.pdf [Last accessed on 21 Apr 2022].

49. Boot-handford ME, Abanades JC, Anthony EJ, et al. Carbon capture and storage update. Energy Environ Sci 2014;7:130-89.

50. Veetil SP, Pasquier LC, Blais JF, Cecchi E, Kentish S, Mercier G. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration. Environ Sci Pollut Res Int 2015;22:13486-95.

51. Ghacham A, Cecchi E, Pasquier LC, Blais JF, Mercier G. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes. J Environ Manage 2015;163:70-7.

52. Dananjayan RR, Kandasamy P, Andimuthu R. Direct mineral carbonation of coal fly ash for CO2 sequestration. Journal of Cleaner Production 2016;112:4173-82.

53. O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK. Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products. Mining, Metallurgy & Exploration 2002;19,95-101. Available from:https://link.springer.com/article/10.1007/BF03403262.

54. O’Connor WK, Dahlin DC, Nilsen DN, Walters RP, Turner PC. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid. Available from: https://www.osti.gov/biblio/897123 [Last accessed on 21 Apr 2022].

55. Dahlin DC, William OK, David NN, Rush GE, Richard WP, Paul TC. A method for permanent CO2 mineral carbonation. Available from: https://www.osti.gov/biblio/896234 [Last accessed on 21 Apr 2022].

56. Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H. Ex situ aqueous mineral carbonation. Environ Sci Technol 2007;41:2587-93.

57. Gadikota G, Matter J, Kelemen P, Park AH. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3. Phys Chem Chem Phys 2014;16:4679-93.

58. O’Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR, Nilsen DN. .

59. CO2 Energy Reactor. CO2 as a feedstock. Available from: http://www.innovationconcepts.eu/res/leaflet/co2energyreactorenglishversionmay2012.pdf [Last accessed on 21 Apr 2022].

60. Santos RM, Knops PCM, Rijnsburger KL, Chiang YW. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization. Front Energy Res 2016:4.

61. CO2 Energy Reactor. CO2 is not as waste but feedstock. Available from: http://www.innovationconcepts.eu/CO2EnergyReactor.htm [Last accessed on 21 Apr 2022].

62. Doucet F. Scoping study on CO2 mineralization technologies.Available from: https://www.academia.edu/4061042/Scoping_study_on_CO2_mineralization_technologies [Last accessed on 21 Apr 2022]

63. Rashid M, Benhelal E, Farhang F, Oliver T, Stockenhuber M, Kennedy E. Application of a concurrent grinding technique for two-stage aqueous mineral carbonation. Journal of CO2 Utilization 2020;42:101347.

64. Benhelal E, Rashid M, Rayson M, et al. Direct aqueous carbonation of heat activated serpentine: Discovery of undesirable side reactions reducing process efficiency. Applied Energy 2019;242:1369-82.

65. Rashid MI, Benhelal E, Farhang F, et al. ACEME: Direct Aqueous Mineral Carbonation of Dunite Rock. Environ Prog Sustainable Energy 2018;38:e13075.

66. Balucan RD, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE. Energy cost of heat activating serpentinites for CO2 storage by mineralisation. International Journal of Greenhouse Gas Control 2013;17:225-39.

67. Rashid M, Benhelal E, Farhang F, et al. Development of Concurrent grinding for application in aqueous mineral carbonation. Journal of Cleaner Production 2019;212:151-61.

68. Kemache N, Pasquier L, Mouedhen I, Cecchi E, Blais J, Mercier G. Aqueous mineral carbonation of serpentinite on a pilot scale: The effect of liquid recirculation on CO2 sequestration and carbonate precipitation. Applied Geochemistry 2016;67:21-9.

69. Sanna A, Wang X, Lacinska A, Styles M, Paulson T, Maroto-valer MM. Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration. Minerals Engineering 2013;49:135-44.

70. Wood CE, Qafoku O, Loring JS, Chaka AM. Role of Fe(II) content in olivine carbonation in wet supercritical CO2. Environ Sci Technol Lett 2019;6:592-9.

71. Wang F, Dreisinger D, Jarvis M, Hitchins T, Trytten L. CO2 mineralization and concurrent utilization for nickel conversion from nickel silicates to nickel sulfides. Chemical Engineering Journal 2021;406:126761.

72. Kim J, Azimi G. Supercritical carbonation of steelmaking slag for the CO2 sequestration. REWAS 2022: Developing Tomorrow’s Technical Cycles 2022;1:565-71.

73. Santos RM, François D, Mertens G, Elsen J, Van Gerven T. Ultrasound-intensified mineral carbonation. Applied Thermal Engineering 2013;57:154-63.

74. Ukwattage N, Ranjith P, Li X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 2017;97:15-22.

75. Huijgen W, Witkamp G, Comans R. Mineral CO2 sequestration in alkaline solid residues. Greenhouse Gas Control Technologies 2005;7:2415-8.

76. Kim J, Azimi G. The CO2 sequestration by supercritical carbonation of electric arc furnace slag. ;52:101667.

77. Mayoral M, Andrés J, Gimeno M. Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes. Fuel 2013;106:448-54.

78. Nyambura MG, Mugera GW, Felicia PL, Gathura NP. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 2011;92:655-64.

79. Srivastava S, Snellings R, Nielsen P, Cool P. Insights into CO2-mineralization using non-ferrous metallurgy slags: CO2(g)-induced dissolution behavior of copper and lead slags. Journal of Environmental Chemical Engineering 2022;10:107338.

80. Zevenhoven R, Slotte M, Åbacka J, Highfield J. A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step. Energy 2016;117:604-11.

81. Mei X, Zhao Q, Min Y, Liu C, Saxén H, Zevenhoven R. Phase transition and dissolution behavior of Ca/Mg-bearing silicates of steel slag in acidic solutions for integration with carbon sequestration. Process Safety and Environmental Protection 2022;159:221-31.

82. Fagerlund J, Nduagu E, Romão I, Zevenhoven R. CO2 fixation using magnesium silicate minerals part 1: Process description and performance. Energy 2012;41:184-91.

83. Romão IS, Gando-ferreira LM, da Silva MMV, Zevenhoven R. CO2 sequestration with serpentinite and metaperidotite from Northeast Portugal. Minerals Engineering 2016;94:104-14.

84. Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA. A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal 2015;279:615-30.

85. Azdarpour A, Asadullah M, Mohammadian E, et al. Mineral carbonation of red gypsum via pH-swing process: Effect of CO2 pressure on the efficiency and products characteristics. Chemical Engineering Journal 2015;264:425-36.

86. Sanna A, Dri M, Maroto-valer M. Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source. Fuel 2013;114:153-61.

87. Hosseini T, Haque N, Selomulya C, Zhang L. Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride - process simulation and techno-economic analysis. Applied Energy 2016;175:54-68.

88. Han S, Im HJ, Wee J. Leaching and indirect mineral carbonation performance of coal fly ash-water solution system. Applied Energy 2015;142:274-82.

89. Pasquier L, Mercier G, Blais J, Cecchi E, Kentish S. Technical & economic evaluation of a mineral carbonation process using southern Québec mining wastes for CO2 sequestration of raw flue gas with by-product recovery. International Journal of Greenhouse Gas Control 2016;50:147-57.

90. International Energy Agency. Technology roadmap. Available from: https://www.iea.org/reports/technology-roadmap-smart-grids [Last accessed on 21 Apr 2022].

91. Andrew RM. Global CO2 emissions from cement production. Earth Syst Sci Data 2018;10:195-217.

92. Strunge T, Naims H, Ostovari H, Olfe-kräutlein B. Priorities for supporting emission reduction technologies in the cement sector - a multi-criteria decision analysis of CO2 mineralisation. Journal of Cleaner Production 2022;340:130712.

93. Wang D, Xiao J, Duan Z. Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects. Construction and Building Materials 2022;314:125646.

94. Liu X, Feng P, Cai Y, Yu X, Yu C, Ran Q. Carbonation behavior of calcium silicate hydrate (C-S-H): its potential for CO2 capture. Chemical Engineering Journal 2022;431:134243.

95. Thonemann N, Zacharopoulos L, Fromme F, Nühlen J. Environmental impacts of carbon capture and utilization by mineral carbonation: a systematic literature review and meta life cycle assessment. Journal of Cleaner Production 2022;332:130067.

96. Sandalow D. Aines R, Friedmann J, et al. Carbon mineralization roadmap. Available from: https://www.icef.go.jp/pdf/summary/roadmap/icef2021_roadmap.pdf [Last accessed on 21 Apr 2022].

97. Wang F, Dreisinger D, Barr G, Martin C. Utilization of copper nickel sulfide mine tailings for CO2 sequestration and enhanced nickel sulfidization. Available from: https://www.springerprofessional.de/en/utilization-of-copper-nickel-sulfide-mine-tailings-for-co2-seque/20094282 [Last accessed on 21 Apr 2022].

98. Stopic S, Dertmann C, Koiwa I, et al. Synthesis of nanosilica via olivine mineral carbonation under high pressure in an autoclave. Metals 2019;9:708.

99. Yin T, Yin S, Srivastava A, Gadikota G. Regenerable solvents mediate accelerated low temperature CO2 capture and carbon mineralization of ash and nano-scale calcium carbonate formation. Resources, Conservation and Recycling 2022;180:106209.

100. Wani O, Khan S, Shoaib M, Zeng H, Bobicki ER. Decarbonization of mineral processing operations: realizing the potential of carbon capture and utilization in the processing of ultramafic nickel ores. Chemical Engineering Journal 2022;433:134203.

101. Wang J, Watanabe N, Okamoto A, Nakamura K, Komai T. Pyroxene control of H2 production and carbon storage during water-peridotite-CO2 hydrothermal reactions. International Journal of Hydrogen Energy 2019;44:26835-47.

102. Kularatne K, Sissmann O, Kohler E, Chardin M, Noirez S, Martinez I. Simultaneous ex-situ CO2 mineral sequestration and hydrogen production from olivine-bearing mine tailings. Applied Geochemistry 2018;95:195-205.

103. Wang J, Watanabe N, Okamoto A, Nakamura K, Komai T. Acceleration of hydrogen production during water-olivine-CO2 reactions via high-temperature-facilitated Fe(II) release. International Journal of Hydrogen Energy 2019;44:11514-24.

104. Wang J, Watanabe N, Okamoto A, Nakamura K, Komai T. Enhanced hydrogen production with carbon storage by olivine alteration in CO2-rich hydrothermal environments. Journal of CO2 Utilization 2019;30:205-13.

105. Zappala LC, Balucan RD, Vaughan J, Steel KM. Development of a nickel extraction-mineral carbonation process: analysis of leaching mechanisms using regenerated acid. Hydrometallurgy 2020;197:105482.

106. Zhang N, Chai YE, Santos RM, Šiller L. Advances in process development of aqueous CO2 mineralisation towards scalability. Journal of Environmental Chemical Engineering 2020;8:104453.

107. Huijgen WJ, Comans RN, Witkamp G. Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Conversion and Management 2007;48:1923-35.

108. Resources for the Future. Carbon pricing calculator. Available from: https://www.rff.org/publications/data-tools/carbon-pricing-calculator/ [Last accessed on 21 Apr 2022].

109. China’s New National Carbon Trading Market: Between promise and pessimism | center for strategic and international studies. Available from: https://www.csis.org/analysis/chinas-new-national-carbon-trading-market-between-promise-and-pessimism [Last accessed on 21 Apr 2022].

110. Bua G, Kapp D, Kuik F, Lis, E. EU emissions allowance prices in the context of the ECB’s climate change action plan. Available from: https://www.ecb.europa.eu/pub/economic-bulletin/focus/2021/html/ecb.ebbox202106_05~ef8ce0bc70.en.html [Last accessed on 21 Apr 2022].

111. EU Carbon Permits. Trading economics. Available from: https://tradingeconomics.com/commodity/carbon [Last accessed on 21 Apr 2022].

Minerals and Mineral Materials
ISSN 2832-269X (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/