REFERENCES

1. Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119.

2. Xu Y, Wang L, He J, et al. 2010 China Noncommunicable Disease Surveillance Group. Prevalence and control of diabetes in Chinese adults. JAMA 2013;310:948-59.

3. Chan JCN, Lim LL, Wareham NJ, et al. The lancet commission on diabetes: using data to transform diabetes care and patient lives. Lancet 2021;396:2019-82.

4. Yeung RO, Zhang Y, Luk A, et al. Metabolic profiles and treatment gaps in young-onset type 2 diabetes in Asia (the JADE programme): a cross-sectional study of a prospective cohort. Lancet Diabetes Endocrinol 2014;2:935-43.

5. Ke C, Stukel TA, Shah BR, et al. Age at diagnosis, glycemic trajectories, and responses to oral glucose-lowering drugs in type 2 diabetes in Hong Kong: a population-based observational study. PLoS Med 2020;17:e1003316.

6. Seshasai SR, Kaptoge S, Thompson A, et al. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011;364:829-41.

7. Wu H, Lau ESH, Yang A, et al. Young age at diabetes diagnosis amplifies the effect of diabetes duration on risk of chronic kidney disease: a prospective cohort study. Diabetologia 2021;64:1990-2000.

8. Wu H, Yang A, Lau ESH, et al. Age- and sex-specific hospital bed-day rates in people with and without type 2 diabetes: a territory-wide population-based cohort study of 1.5 million people in Hong Kong. PLoS Med 2023;20:e1004261.

9. Ke C, Lau E, Shah BR, et al. Excess burden of mental illness and hospitalization in young-onset type 2 diabetes: a population-based cohort study. Ann Intern Med 2019;170:145-54.

10. Srinivasan S, Chen L, Todd J, et al. ProDiGY Consortium. The first genome-wide association study for type 2 diabetes in youth: the progress in diabetes genetics in youth (ProDiGY) consortium. Diabetes 2021;70:996-1005.

11. Zeitler P, Hirst K, Pyle L, et al. TODAY Study Group. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 2012;366:2247-56.

12. Ke C, Shah BR, Luk AO, Di Ruggiero E, Chan JCN. Cardiovascular outcomes trials in type 2 diabetes: time to include young adults. Diabetes Obes Metab 2020;22:3-5.

13. Magliano DJ, Chen L, Carstensen B, et al. Trends in all-cause mortality among people with diagnosed diabetes in high-income settings: a multicountry analysis of aggregate data. Lancet Diabetes Endocrinol 2022;10:112-9.

14. Magliano DJ, Islam RM, Barr ELM, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ 2019;366:l5003.

15. Luk AOY, Ke C, Lau ESH, et al. Secular trends in incidence of type 1 and type 2 diabetes in Hong Kong: a retrospective cohort study. PLoS Med 2020;17:e1003052.

16. Wu H, Lau ESH, Ma RCW, et al. Secular trends in all-cause and cause-specific mortality rates in people with diabetes in Hong Kong, 2001-2016: a retrospective cohort study. Diabetologia 2020;63:757-66.

17. Chan JCN, Lim LL, Luk AOY, et al. From Hong Kong diabetes register to JADE program to RAMP-DM for data-driven actions. Diabetes Care 2019;42:2022-31.

18. Luk A, Fan Y, Fan B, et al. 1829-PUB: precision medicine to redefine insulin secretion and monogenic diabetes randomised controlled trial (PRISM-RCT) in Chinese patients with young-onset diabetes - study design and baseline profile. Diabetes 2023;72:1829.

19. Polonsky KS, Given BD, Hirsch LJ, et al. Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 1988;318:1231-9.

20. Gerich JE. Control of glycaemia. Baillieres Clin Endocrinol Metab 1993;7:551-86.

21. Polonsky KS. The past 200 years in diabetes. N Engl J Med 2012;367:1332-40.

22. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009;58:773-95.

23. McCarthy M, Zeggini E. Genetics of type 2 diabetes. Curr Rep Diabetes 2006;6:147-54.

24. Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature 2016;536:41-7.

25. Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020;582:240-5.

26. Ogilvie RF. A quantitative estimation of pancreatic islet tissue. QJM 1937;6:287-300.

27. Yoon KH, Ko SH, Cho JH, et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 2003;88:2300-8.

28. Zhao HL, Lai FM, Tong PC, et al. Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes 2003;52:2759-66.

29. Hart PA, Bellin MD, Andersen DK, et al. Consortium for the Study of Chronic Pancreatitis; Diabetes; and Pancreatic Cancer(CPDPC). Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol 2016;1:226-37.

30. Lernmark A, Freedman ZR, Hofmann C, et al. Islet-cell-surface antibodies in juvenile diabetes mellitus. N Engl J Med 1978;299:375-80.

31. Gregory GA, Robinson TIG, Linklater SE, et al. International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol 2022;10:741-60.

32. Metcalfe KA, Hitman GA, Rowe RE, et al. Concordance for type 1 diabetes in identical twins is affected by insulin genotype. Diabetes Care 2001;24:838-42.

33. Sharp SA, Weedon MN, Hagopian WA, Oram RA. Clinical and research uses of genetic risk scores in type 1 diabetes. Curr Opin Genet Dev 2018;50:96-102.

34. Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 2011;11:533-42.

35. Barrett JC, Clayton DG, Concannon P, et al. Type 1 diabetes genetics consortium. genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009;41:703-7.

36. Redondo MJ, Geyer S, Steck AK, et al. Type 1 Diabetes TrialNet Study Group. A Type 1 diabetes genetic risk score predicts progression of islet autoimmunity and development of type 1 diabetes in individuals at risk. Diabetes Care 2018;41:1887-94.

37. Bonifacio E, Beyerlein A, Hippich M, et al. TEDDY Study Group. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: a prospective study in children. PLoS Med 2018;15:e1002548.

38. Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. The Canadian-European randomized control trial group. Diabetes 1988;37:1574-82.

39. Mullard A. FDA approves anti-CD3 antibody to delay type 1 diabetes onset. Nat Rev Drug Discov 2023;22:6-7.

40. Herold KC, Bundy BN, Long SA, et al. Type 1 Diabetes TrialNet Study Group. An Anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med 2019;381:603-13.

41. Ramos EL, Dayan CM, Chatenoud L, et al. PROTECT Study Investigators. Teplizumab and β-Cell function in newly diagnosed type 1 diabetes. N Engl J Med 2023;389:2151-61.

42. Padilla-Martínez F, Collin F, Kwasniewski M, Kretowski A. Systematic review of polygenic risk scores for type 1 and type 2 diabetes. Int J Mol Sci 2020;21:1703.

43. Sims EK, Carr ALJ, Oram RA, DiMeglio LA, Evans-Molina C. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat Med 2021;27:1154-64.

44. Rodbard D. Continuous glucose monitoring: a review of recent studies demonstrating improved glycemic outcomes. Diabetes Technol Ther 2017;19:S25-37.

45. Nathan DM, Genuth S, Lachin J, et al. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-86.

46. Buzzetti R, Tuomi T, Mauricio D, et al. Management of latent autoimmune diabetes in adults: a consensus statement from an international expert panel. Diabetes 2020;69:2037-47.

47. Imagawa A. Two types of fulminant type 1 diabetes mellitus: immune checkpoint inhibitor-related and conventional. J Diabetes Investig 2021;12:917-9.

48. Bornstein SR, Rubino F, Ludwig B, et al. Consequences of the COVID-19 pandemic for patients with metabolic diseases. Nat Metab 2021;3:289-92.

49. Ata A, Jalilova A, Kırkgöz T, et al. Does COVID-19 predispose patients to type 1 diabetes mellitus? Clin Pediatr Endocrinol 2022;31:33-7.

50. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 2021;17:11-30.

51. Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health 2005;95 Suppl 1:S144-50.

52. Akturk HK, Kahramangil D, Sarwal A, Hoffecker L, Murad MH, Michels AW. Immune checkpoint inhibitor-induced type 1 diabetes: a systematic review and meta-analysis. Diabet Med 2019;36:1075-81.

53. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:158-68.

54. Ugai T, Sasamoto N, Lee HY, et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 2022;19:656-73.

55. Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021;22:809-19.

56. Matthews DR, Paldánius PM, Proot P, Chiang Y, Stumvoll M, Del Prato S. VERIFY study group. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet 2019;394:1519-29.

57. Cheung JTK, Yang A, Wu H, et al. Early treatment with dipeptidyl-peptidase 4 inhibitors reduces glycaemic variability and delays insulin initiation in type 2 diabetes: a propensity score-matched cohort study. Diabetes Metab Res Rev 2023;40:e3711.

58. Laiteerapong N, Ham SA, Gao Y, et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the diabetes & aging study). Diabetes Care 2019;42:416-26.

59. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577-89.

60. Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643-53.

61. Turner R, Stratton I, Horton V, et al. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK prospective diabetes study group. Lancet 1997;350:1288-93.

62. Buzzetti R, Zampetti S, Maddaloni E. Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat Rev Endocrinol 2017;13:674-86.

63. Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 1999;42:146-50.

64. Zhang J, Yang Z, Xiao J, et al. China National Diabetes and Metabolic Disorders Study Group. Association between family history risk categories and prevalence of diabetes in Chinese population. PLoS One 2015;10:e0117044.

65. Li JK, Ng MC, So WY, et al. Phenotypic and genetic clustering of diabetes and metabolic syndrome in Chinese families with type 2 diabetes mellitus. Diabetes Metab Res Rev 2006;22:46-52.

66. Zhang Y, Luk AOY, Chow E, et al. High risk of conversion to diabetes in first-degree relatives of individuals with young-onset type 2 diabetes: a 12-year follow-up analysis. Diabet Med 2017;34:1701-9.

67. Bonnefond A, Unnikrishnan R, Doria A, et al. Monogenic diabetes. Nat Rev Dis Primers 2023;9:12.

68. Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med 1974;43:339-57.

69. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001;345:971-80.

70. Feingold K. Atypical forms of diabetes. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc.; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279128/ [Last accessed on 15 Jan 2024].

71. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009;301:2129-40.

72. Todd JN, Kleinberger JW, Zhang H, et al. Monogenic diabetes in youth with presumed type 2 diabetes: results from the progress in diabetes genetics in youth (ProDiGY) collaboration. Diabetes Care 2021;44:2312-9.

73. Shields BM, Shepherd M, Hudson M, et al. UNITED study team. Population-based assessment of a biomarker-based screening pathway to aid diagnosis of monogenic diabetes in young-onset patients. Diabetes Care 2017;40:1017-25.

74. Christensen AS, Hædersdal S, Støy J, et al. Efficacy and safety of glimepiride with or without linagliptin treatment in patients with hnf1a diabetes (maturity-onset diabetes of the young type 3): a randomized, double-blinded, placebo-controlled, crossover trial (GLIMLINA). Diabetes Care 2020;43:2025-33.

75. Thewjitcharoen Y, Nakasatien S, Tsoi TF, Lim CKP, Himathongkam T, Chan JCN. Hypertriglyceridemia as a main feature associated with 17q12 deletion syndrome-related hepatocyte nuclear factor 1β-maturity-onset diabetes of the young. Endocrinol Diabetes Metab Case Rep 2022;2022:22-0297.

76. Thewjitcharoen Y, Wanothayaroj E, Krittiyawong S, et al. Phenotypic and genetic heterogeneity in a thai glucokinase MODY family reveals the complexity of young-onset diabetes. Front Endocrinol 2021;12:690343.

77. Ng MC, Li JK, So WY, et al. Nature or nurture: an insightful illustration from a Chinese family with hepatocyte nuclear factor-1 alpha diabetes (MODY3). Diabetologia 2000;43:816-8.

78. Matschinsky FM. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes 2002;51 Suppl 3:S394-404.

79. Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia 2017;60:769-77.

80. Yabe D, Seino Y. Type 2 diabetes via β-cell dysfunction in east Asian people. Lancet Diabetes Endocrinol 2016;4:2-3.

81. Fan Y, Fan B, Lau ESH, et al. Comparison of beta-cell function between Hong Kong Chinese with young-onset type 2 diabetes and late-onset type 2 diabetes. Diabetes Res Clin Pract 2023;205:110954.

82. López Tinoco C, Sánchez Lechuga B, Bacon S, et al. Evaluation of pregnancy outcomes in women with GCK-MODY. Diabet Med 2021;38:e14488.

83. Dickens LT, Letourneau LR, Sanyoura M, Greeley SAW, Philipson LH, Naylor RN. Management and pregnancy outcomes of women with GCK-MODY enrolled in the US Monogenic Diabetes Registry. Acta Diabetol 2019;56:405-11.

84. Zhu D, Gan S, Liu Y, et al. Dorzagliatin monotherapy in Chinese patients with type 2 diabetes: a dose-ranging, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Diabetes Endocrinol 2018;6:627-36.

85. Chow E, Wang K, Lim CKP, et al. Dorzagliatin, a dual-acting glucokinase activator, increases insulin secretion and glucose sensitivity in glucokinase maturity-onset diabetes of the young and recent-onset type 2 diabetes. Diabetes 2023;72:299-308.

86. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 2018;50:1219-24.

87. Wang K, Shi M, Yang A, et al. GCKR and GCK polymorphisms are associated with increased risk of end-stage kidney disease in Chinese patients with type 2 diabetes: the Hong Kong Diabetes Register (1995-2019). Diabetes Res Clin Pract 2022;193:110118.

88. Wang K, Shi M, Huang C, et al. Evaluating the impact of glucokinase activation on risk of cardiovascular disease: a Mendelian randomisation analysis. Cardiovasc Diabetol 2022;21:192.

89. Urano F. Wolfram syndrome: diagnosis, management, and treatment. Curr Diab Rep 2016;16:6.

90. Domenech E, Gomez-Zaera M, Nunes V. Wolfram/DIDMOAD syndrome, a heterogenic and molecularly complex neurodegenerative disease. Pediatr Endocrinol Rev 2006;3:249-57.

91. Chan JC, Woo J, Cockram CS, Teoh R. DIDMOAD syndrome in a Chinese male with HLA DR7 DRw12. Postgrad Med J 1987;63:1109.

92. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.

93. Lau YL, Chan LC, Chan YY, et al. Prevalence and genotypes of α- and β-thalassemia carriers in Hong Kong - implications for population screening. N Engl J Med 1997;336:1298-301.

94. Lao TT, Ho LF. α-Thalassaemia trait and gestational diabetes mellitus in Hong Kong. Diabetologia 2001;44:966-71.

95. Fernández-Real JM, McClain D, Manco M. Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of type 2 diabetes. Diabetes Care 2015;38:2169-76.

96. Bazi A, Sharifi-Rad J, Rostami D, Sargazi-Aval O, Safa A. Diabetes mellitus in thalassaemia major patients: a report from the southeast of Iran. J Clin Diagn Res 2017;11:BC01-4.

97. Hussein N, Henneman L, Kai J, Qureshi N. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease. Cochrane Database Syst Rev 2021;10:CD010849.

98. Cousens NE, Gaff CL, Metcalfe SA, Delatycki MB. Carrier screening for beta-thalassaemia: a review of international practice. Eur J Hum Genet 2010;18:1077-83.

99. Guyer MS, Collins FS. The human genome project and the future of medicine. Am J Dis Child 1993;147:1145-52.

100. Pociot F. Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunology 2017;6:e162.

101. McCarthy M, Birney E. Personalized profiles for disease risk must capture all facets of health. Nature 2021;597:175-7.

102. Ma RC, Cooper ME. Genetics of diabetic kidney disease-from the worst of nightmares to the light of dawn? J Am Soc Nephrol 2017;28:389-93.

103. Stadler LKJ, Farooqi IS. A new drug target for type 2 diabetes. Cell 2017;170:12-4.

104. Hara K, Fujita H, Johnson TA, et al. DIAGRAM consortium. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet 2014;23:239-46.

105. Udler MS, McCarthy MI, Florez JC, Mahajan A. Genetic risk scores for diabetes diagnosis and precision medicine. Endocr Rev 2019;40:1500-20.

106. Guinan K, Beauchemin C, Tremblay J, et al. Economic evaluation of a new polygenic risk score to predict nephropathy in adult patients with type 2 diabetes. Can J Diabetes 2021;45:129-36.

107. Tremblay J, Haloui M, Attaoua R, et al. Polygenic risk scores predict diabetes complications and their response to intensive blood pressure and glucose control. Diabetologia 2021;64:2012-25.

108. Noordam R, Läll K, Smit RAJ, et al. Stratification of type 2 diabetes by age of diagnosis in the UK biobank reveals subgroup-specific genetic associations and causal risk profiles. Diabetes 2021;70:1816-25.

109. Herman W, Hoerger T, Brandle M, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med 2005;142:323-32.

110. Zhang L, Zhang Y, Shen S, et al. China Diabetes Prevention Program Study Group. Safety and effectiveness of metformin plus lifestyle intervention compared with lifestyle intervention alone in preventing progression to diabetes in a Chinese population with impaired glucose regulation: a multicentre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol 2023;11:567-77.

111. Hahn SJ, Kim S, Choi YS, Lee J, Kang J. Prediction of type 2 diabetes using genome-wide polygenic risk score and metabolic profiles: A machine learning analysis of population-based 10-year prospective cohort study. EBioMedicine 2022;86:104383.

112. Lim LL, Chow E, Chan JCN. Cardiorenal diseases in type 2 diabetes mellitus: clinical trials and real-world practice. Nat Rev Endocrinol 2023;19:151-63.

113. Choi JG, Winn AN, Skandari MR, et al. First-line therapy for type 2 diabetes with sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists : a cost-effectiveness study. Ann Intern Med 2022;175:1392-400.

114. Knowles JW, Rader DJ, Khoury MJ. Cascade screening for familial hypercholesterolemia and the use of genetic testing. JAMA 2017;318:381-2.

115. Chan JC, Sui Y, Oldenburg B, et al. JADE and PEARL Project Team. Effects of telephone-based peer support in patients with type 2 diabetes mellitus receiving integrated care: a randomized clinical trial. JAMA Intern Med 2014;174:972-81.

116. Chan JC, Ozaki R, Luk A, et al. JADE Collaborative Study Group. Delivery of integrated diabetes care using logistics and information technology - the Joint Asia Diabetes Evaluation (JADE) program. Diabetes Res Clin Pract 2014;106 Suppl 2:S295-304.

117. Ma RCW, Chan JCN. Implementation of precision genetic approaches for type 1 and 2 diabetes. In: Basu R, editor. Precision medicine in diabetes. Cham: Springer International Publishing; 2022. pp. 111-29.

118. Ma RCW, Xie F, Lim CKP, et al. A randomized clinical trial of genetic testing and personalized risk counselling in patients with type 2 diabetes receiving integrated care -the genetic testing and patient empowerment (GEM) trial. Diabetes Res Clin Pract 2022;189:109969.

119. Grant RW, Hivert M, Pandiscio JC, Florez JC, Nathan DM, Meigs JB. The clinical application of genetic testing in type 2 diabetes: a patient and physician survey. Diabetologia 2009;52:2299-305.

120. Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018;236:R109-43.

121. Holman RR. Assessing the potential for α-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 1998;40 Suppl:S21-5.

122. Weng J, Li Y, Xu W, et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet 2008;371:1753-60.

123. Chan JCN, Paldánius PM, Mathieu C, Stumvoll M, Matthews DR, Del Prato S. Early combination therapy delayed treatment escalation in newly diagnosed young-onset type 2 diabetes: a subanalysis of the VERIFY study. Diabetes Obes Metab 2021;23:245-51.

124. Luk AOY, Lau ESH, Lim C, et al. Diabetes-related complications and mortality in patients with young-onset latent autoimmune diabetes: a 14-year analysis of the prospective Hong Kong diabetes register. Diabetes Care 2019;42:1042-50.

125. Fan B, Lim CKP, Poon EWM, et al. Differential associations of GAD antibodies (GADA) and C-peptide with insulin initiation, glycemic responses, and severe hypoglycemia in patients diagnosed with type 2 diabetes. Diabetes Care 2023;46:1282-91.

126. Berger B, Stenström G, Sundkvist G. Random C-peptide in the classification of diabetes. Scand J Clin Lab Invest 2000;60:687-93.

127. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2004;46:3-19.

128. Fan B, Wu H, Shi M, et al. Associations of the HOMA2-%B and HOMA2-IR with progression to diabetes and glycaemic deterioration in young and middle-aged Chinese. Diabetes Metab Res Rev 2022;38:e3525.

129. Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 2018;6:361-9.

130. Li X, Yang S, Cao C, et al. Validation of the Swedish Diabetes re-grouping scheme in adult-onset diabetes in China. J Clin Endocrinol Metab 2020;105:e3519-28.

131. Ke C, Narayan KMV, Chan JCN, Jha P, Shah BR. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol 2022;18:413-32.

132. Chan SP, Lim LL, Chan JCN, Matthews DR. Adjusting the use of glucose-lowering agents in the real-world clinical management of people with type 2 diabetes: a narrative review. Diabetes Ther 2023;14:823-38.

133. Shields BM, Dennis JM, Angwin CD, et al. TriMaster Study group. Patient stratification for determining optimal second-line and third-line therapy for type 2 diabetes: the TriMaster study. Nat Med 2023;29:376-83.

134. Chow E, Yang A, Chung CHL, Chan JCN. A clinical perspective of the multifaceted mechanism of metformin in diabetes, infections, cognitive dysfunction, and cancer. Pharmaceuticals 2022;15:442.

135. Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. Lancet 2011;378:182-97.

136. Dennis JM. Precision medicine in type 2 diabetes: using individualized prediction models to optimize selection of treatment. Diabetes 2020;69:2075-85.

137. Ko GT, So WY, Tong PC, et al. Effect of interactions between C peptide levels and insulin treatment on clinical outcomes among patients with type 2 diabetes mellitus. CMAJ 2009;180:919-26.

138. Matthews D, Del Prato S, Mohan V, et al. Insights from VERIFY: early combination therapy provides better glycaemic durability than a stepwise approach in newly diagnosed type 2 diabetes. Diabetes Ther 2020;11:2465-76.

139. Diabetes Association Professional Practice Committee. 5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2022. Diabetes Care 2022;45:S60-82.

140. Lao TT, Chan BC, Leung WC, Ho LF, Tse KY. Maternal hepatitis B infection and gestational diabetes mellitus. J Hepatol 2007;47:46-50.

141. Magee MJ, Khakharia A, Gandhi NR, et al. Increased risk of incident diabetes among individuals with latent tuberculosis infection. Diabetes Care 2022;45:880-7.

142. Golden SH, Lazo M, Carnethon M, et al. Examining a bidirectional association between depressive symptoms and diabetes. JAMA 2008;299:2751-9.

143. Harris ML, Oldmeadow C, Hure A, Luu J, Loxton D, Attia J. Stress increases the risk of type 2 diabetes onset in women: a 12-year longitudinal study using causal modelling. PLoS One 2017;12:e0172126.

144. Fisher EB, Chan JC, Nan H, Sartorius N, Oldenburg B. Co-occurrence of diabetes and depression: conceptual considerations for an emerging global health challenge. J Affect Disord 2012;142 Suppl:S56-66.

145. Peyrot M, Burns KK, Davies M, et al. Diabetes attitudes wishes and needs 2 (DAWN2): a multinational, multi-stakeholder study of psychosocial issues in diabetes and person-centred diabetes care. Diabetes Res Clin Pract 2013;99:174-84.

146. Nicolucci A, Kovacs Burns K, Holt RI, et al. DAWN2 Study Group. Diabetes attitudes, wishes and needs second study (DAWN2™): cross-national benchmarking of diabetes-related psychosocial outcomes for people with diabetes. Diabet Med 2013;30:767-77.

147. Riaz H, Krasuski RA. Best practice advisories should not replace good clinical acumen. Am J Med 2017;130:245-6.

148. Todd JW. The superior clinical acumen of the old physicians, a myth. Lancet 1953;1:482-4.

149. Fuller J. The new medical model: a renewed challenge for biomedicine. CMAJ 2017;189:E640-1.

150. Chung WK, Erion K, Florez JC, et al. Precision Medicine in Diabetes: a consensus report from the American diabetes association (ADA) and the European association for the study of diabetes (EASD). Diabetes Care 2020;43:1617-35.

151. Xie F, Chan JC, Ma RC. Precision medicine in diabetes prevention, classification and management. J Diabetes Investig 2018;9:998-1015.

152. Chan JCN, So WY, Ma RCW, Tong PCY, Wong R, Yang X. The complexity of vascular and non-vascular complications of diabetes: the Hong Kong diabetes registry. Curr Cardiovasc Risk Rep 2011;5:230-9.

153. Hannawa AF, Wu AW, Kolyada A, Potemkina A, Donaldson LJ. The aspects of healthcare quality that are important to health professionals and patients: a qualitative study. Patient Educ Couns 2022;105:1561-70.

154. Lim LL, Lau ESH, Kong APS, et al. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care 2018;41:1312-20.

155. Backhouse A, Ogunlayi F. Quality improvement into practice. BMJ 2020;368:m865.

156. Lim LL, Lau ESH, Ozaki R, et al. Association of technologically assisted integrated care with clinical outcomes in type 2 diabetes in Hong Kong using the prospective JADE program: a retrospective cohort analysis. PLoS Med 2020;17:e1003367.

157. Glasgow RE, Harden SM, Gaglio B, et al. RE-AIM planning and evaluation framework: adapting to new science and practice with a 20-year review. Front Public Health 2019;7:64.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/