REFERENCES
1. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004;1660:171-99.
2. Rebrin I, Kamzalov S, Sohal RS. Tissue bioavailability and detection of coenzyme Q. Methods Enzymol 2004;378:138-45.
3. Kaurola P, Sharma V, Vonk A, Vattulainen I, Róg T. Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. Biochim Biophys Acta 2016;1858:2116-22.
4. Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, et al. The paradox of coenzyme Q 10 in aging. Nutrients 2019;11:2221.
6. Xia L, Nordman T, Olsson JM, Damdimopoulos A, Björkhem-Bergman L, et al. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 2003;278:2141-6.
7. Vadhanavikit S, Ganther HE. Decreased ubiquinone levels in tissues of rats deficient in selenium. Biochem Biophys Res Commun 1993;190:921-6.
8. Vadhanavikit S, Ganther HE. Selenium deficiency and decreased coenzyme Q levels. Mol Aspects Med 1994;15:s103-7.
9. Alcázar-Fabra M, Trevisson E, Brea-Calvo G. Clinical syndromes associated with Coenzyme Q10 deficiency. Essays Biochem 2018;62:377-98.
10. Emmanuele V, López LC, Berardo A, Naini A, Tadesse S, et al. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 2012;69:978-83.
11. Barca E, Kleiner G, Tang G, Ziosi M, Tadesse S, et al. Decreased coenzyme Q10 levels in multiple system atrophy cerebellum. J Neuropathol Exp Neurol 2016;75:663-72.
12. Lagier-Tourenne C, Tazir M, Lopez LC, Quinzii CM, Assoum M, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 2008;82:661-72.
13. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 2008;82:623-30.
14. Dinwiddie DL, Smith LD, Miller NA, Atherton AM, Farrow EG, et al. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 2013;102:148-56.
15. Mollet J, Giurgea I, Schlemmer D, Dallner G, Chretien D, et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest 2007;117:765-72.
16. Vasta V, Merritt JL, Saneto RP, Hahn SH. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr Int 2012;54:585-601.
17. Rötig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 2000;356:391-95.
18. López LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJT, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 2006;79:1125-29.
19. Quinzii C, Loos M. Multisystemic infantile CoQ10 deficiency with renal involvement. In: Saneto RP, Parikh S, Cohen BH, editors. Mitochondrial case studies underlying mechanisms and diagnosis. Academic Press; 2016. pp. 299-304.
20. Iványi B, Rácz GZ, Gál P, Brinyiczki K, Bódi I, et al. Diffuse mesangial sclerosis in a PDSS2 mutation-induced coenzyme Q10 deficiency. Pediatr Nephrol 2018;33:439-46.
21. Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015;26:1279-89.
22. Forsgren M, Attersand A, Lake S, Grünler J, Swiezewska E, et al. Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J 2004;382:519-26.
23. Salviati L, Sacconi S, Murer L, Zacchello G, Franceschini L, et al. Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 2005;65:606-8.
24. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, et al. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 2006;78:345-49.
25. Desbats MA, Vetro A, Limongelli I, Lunardi G, Casarin A, et al. Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure. Eur J Hum Genet 2015;23:1254-58.
26. Jakobs BS, van den Heuvel LP, Smeets RJP, de Vries MC, Hien S, et al. A novel mutation in COQ2 leading to fatal infantile multisystem disease. J Neurol Sci 2013;326:24-8.
27. Scalais E, Chafai R, Van Coster R, Bindl L, Nuttin C, et al. Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 2013;17:625-30.
28. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, Caridi G, Piemonte F, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 2007;18:2773-80.
29. Eroglu F, Ozaltin F, Gönç N, Nalçacıoğlu H, Birsin Özçakar Z, et al. Response to early coenzyme Q10 supplementation is not sustained in CoQ10 deficiency caused by CoQ2 mutation. Pediatr Neurol 2018;88:71-4.
30. Mitsui J, Matsukawa T, Ishiura H, Fukuda Y, Ichikawa Y, et al. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 2013;369:233-44.
31. Belogrudov GI, Lee PT, Jonassen T, Hsu AY, Gin P, et al. Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys 2001;392:48-58.
32. Salviati L, Trevisson E, Rodriguez Hernandez MA, Casarin A, Pertegato V, et al. Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. J Med Genet 2012;49:187-91.
33. Brea-Calvo G, Haack TB, Karall D, Ohtake A, Invernizzi F, et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet 2015;96:309-17.
34. Chung WK, Martin K, Jalas C, Braddock SR, Juusola J, et al. Mutations in COQ4, an essential component of coenzyme Q biosynthesis, cause lethal neonatal mitochondrial encephalomyopathy. J Med Genet 2015;52:627-35.
35. Sondheimer N, Hewson S, Cameron JM, Somers GR, Broadbent JD, et al. Novel recessive mutations in COQ4 cause severe infantile cardiomyopathy and encephalopathy associated with CoQ 10 deficiency. Mol Genet Metab Rep 2017;12:23-7.
36. Ling TK, Law CY, Yan KW, Fong NC, Wong KC, et al. Clinical whole-exome sequencing reveals a common pathogenic variant in patients with CoQ10 deficiency: An underdiagnosed cause of mitochondriopathy. Clin Chim Acta 2019;497:88-94.
37. Lu M, Zhou Y, Wang Z, Xia Z, Ren J, et al. Clinical phenotype, in silico and biomedical analyses, and intervention for an east asian population-specific c.370G>A (p.G124S) COQ4 mutation in a chinese family with CoQ10 deficiency-associated leigh syndrome. J Hum Genet 2019;64:297-304.
38. Yu MH, Tsang MH, Lai S, Ho MS, Tse DML, et al. Primary coenzyme Q10 deficiency-7: expanded phenotypic spectrum and a founder mutation in Southern Chinese. NPJ Genom Med 2019;4:18.
39. Bosch AM, Kamsteeg EJ, Rodenburg RJ, van Deutekom AW, Buis DR, et al. Coenzyme Q10 deficiency due to a COQ4 gene defect causes childhood-onset spinocerebellar ataxia and stroke-like episodes. Mol Genet Metab Rep 2018;17:19-21.
40. Caglayan AO, Gumus H, Sandford E, Kubisiak TL, Ma Q, et al. COQ4 mutation leads to childhood-onset ataxia improved by CoQ10 administration. Cerebellum 2019;18:665.
41. Nguyen T, Casarin A, Desbats MA, Doimo M, Trevisson E, et al. Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis. Biochim Biophys Acta 2014;184:1628-38.
42. Malicdan MC, Vilboux T, Ben-Zeev B, Guo J, Eliyahu A, et al. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat 2018;39:69-79.
43. Stenmark P, Grünler J, Mattsson J, Sindelar PJ, Nordlund P, et al. A new member of the family of di-iron carboxylate proteins. Coq7 (clk-1), a membrane-bound hydroxylase involved in ubiquinone biosynthesis. J Biol Chem 2001;276:33297-300.
44. Freyer C, Stranneheim H, Naess K, Mourier A, Felser A, et al. Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid. J Med Genet 2015;52:779-83.
45. Wang Y, Smith C, Parboosingh JS, Khan A, Innes M, et al. Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment. J Cell Mol Med 2017;21:2329-43.
46. Kwong A, Chiu A, Tsang M, Lun K, Richard J, et al. A fatal case of COQ7-associated primary coenzyme Q 10 deficiency. JIMD Rep 2019;47:23-9.
47. García-Corzo L, Luna-Sánchez M, Doerrier C, García JA, Guarás A, et al. Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum Mol Genet 2013;22:1233-48.
48. Lohman DC, Forouhar F, Beebe ET, Stefely MS, Minogue CE, et al. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc Natl Acad Sci U S A 2014;111:E4697-705.
49. Duncan AJ, Bitner-Glindzicz M, Meunier B, Costello H, Hargreaves IP, et al. A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 2009;84:558-66.
50. Rahman S, Hargreaves I, Clayton P, Heales S. Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 2001;139:456-8.
51. Danhauser K, Herebian D, Haack TB, Rodenburg RJ, Strom TM, et al. Fatal neonatal encephalopathy and lactic acidosis caused by a homozygous loss-of-function variant in COQ9. Eur J Hum Genet 2016;24:450-4.
52. Smith AC, Ito Y, Ahmed A, Schwartzentruber JA, Beaulieu CL, et al. A family segregating lethal neonatal coenzyme Q 10 deficiency caused by mutations in COQ9. J Inherit Metab Dis 2018;41:719-29.
53. Olgac A, Öztoprak Ü, Kasapkara ÇS, Kılıç M, Yüksel D, et al. A rare case of primary coenzyme Q10 deficiency due to COQ9 mutation. J Pediatr Endocrinol Metab 2020;33:165-70.
54. Zhang X. Exome sequencing greatly expedites the progressive research of mendelian diseases. Front Med 2014;8:42-57.
55. Yang Y, Muzny DM, Xia F, Niu Z, Person R, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014;312:1870-9.
56. Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet 2015;47:717-26.
57. Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, et al. The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am J Human Genet 2015;97:199-215.
58. Yubero D, Allen G, Artuch R, Montero R. The value of coenzyme q10 determination in mitochondrial patients. J Clin Med 2017;6:37.
59. Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 2006;40:445-53.
60. Zaki NM. Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Deliv 2016;23:1868-81.
61. Kwong LK, Kamzalov S, Rebrin I, Bayne V AC, Jana CK, et al. Effects of coenzyme Q(10) administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic Biol Med 2002;33:627-38.
62. Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 2008;358:2849-50.
63. Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 2007;7:S78-88.
64. Auré K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, et al. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology 2004;63:727-9.
65. López LC, Quinzii CM, Area E, Naini A, Rahman S, et al. Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 2010;5:e11897.
66. Kleiner G, Barca E, Ziosi M, Emmanuele V, Xu Y, et al. CoQ 10 Supplementation Rescues Nephrotic Syndrome Through Normalization of H 2 S Oxidation Pathway. Biochim Biophys Acta Mol Basis Dis 2018;1864:3708-22.
67. Saiki R, Lunceford AL, Shi Y, Marbois B, King R, et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol 2008;295:F1535-44.
68. García-Corzo L, Luna-Sánchez M, Doerrier C, Ortiz F, Escames G, et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta 2014;1842:893-901.
69. Herebian D, López LC, Distelmaier F. Bypassing human CoQ10 deficiency. Mol Genet Metab 2018;123:289-91.
70. Herebian D, Seibt A, Smits SHJ, Rodenburg RJ, Mayatepek E, et al. 4-Hydroxybenzoic acid restores CoQ 10 biosynthesis in human COQ2 deficiency. Ann Clin Transl Neurol 2017;4:902-8.
71. Luna-Sánchez M, Díaz-Casado E, Barca E, Tejada MA, Montilla-García A, et al. The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene. EMBO Mol Med 2015;7:670-87.
72. Acosta Lopez M, Trevisson E, Canton M, Vazquez-Fonseca L, Morbidoni V, et al. Vanillic acid restores coenzyme Q biosynthesis and ATP production in human cells lacking COQ6. Oxid Med Cell Longev 2019;2019:3904905.
73. Ozeir M, Muhlenhoff U, Webert H, Lill R, Fontecave M, et al. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem Biol 2011;18:1134-42.
74. Park E, Ahn YH, Kang HG, Yoo KH, Won NH, et al. COQ6 mutations in children with steroid-resistant focal segmental glomerulosclerosis and sensorineural hearing loss. Am J Kidney Dis 2017;70:139-44.
75. Doimo M, Trevisson E, Airik R, Bergdoll M, Santos-Ocaña C, et al. Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim Biophys Acta 2014;1842:1-6.
76. Xie LX, Ozeir M, Tang JY, Chen JY, Jaquinod SK, et al. Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J Biol Chem 2012;287:23571-81.
77. Wang Y, Oxer D, Hekimi S. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat Commun 2015;6:6393.
78. Widmeier E, Airik M, Hannah H, Schapiro D, Wedel J, et al. Treatment with 2,4-dihydroxybenzoic acid prevents FSGS progression and renal fibrosis in podocyte-specific Coq6 knockout mice. JASN March 2019;30:393-405.