REFERENCES

1. Crago AM, Dickson MA. Liposarcoma: multimodality management and future targeted therapies. Surg Oncol Clin N Am 2016;25:761-73.

2. Crago AM, Singer S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol 2011;23:373-8.

3. Abeshouse A, Adebamowo C, Adebamowo SN, Akbani R, Akeredolu T, et al. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 2017;171:950-65.e28.

4. Jones RL, Lee ATJ, Thway K, Huang PH. Clinical and molecular spectrum of liposarcoma. J Clin Oncol 2018;36:151-9.

5. Somaiah N, Beird HC, Barbo A, Mills Shaw KR, Wang WL, et al. Targeted next generation sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations. Oncotarget 2018;9:19891-9.

6. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9.

7. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299-303.

8. Zhang Z, Wang H, Li M, Rayburn ER, Agrawal S, et al. Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene 2005;24:7238-47.

9. Jin Y, Lee H, Zeng SX, Dai MS, Lu H. MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 2003;22:6365-77.

10. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 2009;11:694-704.

11. Kanojia D, Nagata Y, Garg M, Lee DH, Sato A, et al. Genomic landscape of liposarcoma. Oncotarget 2015;6:42429-44.

12. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010;42:715-21.

13. Beird HC, Wu CC, Ingram DR, Wang WL, Alimohamed A, et al. Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin. Cold Spring Harb Mol case Stud 2018;4:pli:a002386.

14. Chibon F, Mariani O, Derré J, Malinge S, Coindre JM, et al. A subgroup of malignant fibrous histiocytomas is associated with genetic changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet 2002;139:24-9.

15. Chibon F, Mariani O, Derré J, Mairal A, Coindre J-M, et al. ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes Cancer 2004;40:32-7.

16. Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 2007;11:361-74.

17. Asano N, Yoshida A, Mitani S, Kobayashi E, Shiotani B, et al. Frequent amplification of receptor tyrosine kinase genes in welldifferentiated/ dedifferentiated liposarcoma. Oncotarget 2017;8:12941-52.

18. Taylor BS, DeCarolis PL, Angeles CV., Brenet F, Schultz N, et al. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov 2011;1:587-97.

19. Li C, Shen Y, Ren Y, Liu W, Li M, et al. Oncogene mutation profiling reveals poor prognosis associated with FGFR1/3 mutation in liposarcoma. Hum Pathol 2016;55:143-50.

20. Nakazawa MS, Eisinger-Mathason TSK, Sadri N, Ochocki JD, Gade TPF, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun 2016;7:10539.

21. Keung EZ, Akdemir KC, Al Sannaa GA, Garnett J, Lev D, et al. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. J Clin Invest 2015;125:2965-78.

22. Smolle MA, Leithner A, Posch F, Szkandera J, Liegl-Atzwanger B, et al. MicroRNAs in different histologies of soft tissue sarcoma: a comprehensive review. Int J Mol Sci 2017;18:pli:E1960.

23. Lee DH, Forscher C, Di Vizio D, Koeffler HP. Induction of p53-independent apoptosis by ectopic expression of HOXA5 in human liposarcomas. Sci Rep 2015;5:12580.

24. Lee DH, Amanat S, Goff C, Weiss LM, Said JW, et al. Overexpression of miR-26a-2 in human liposarcoma is correlated with poor patient survival. Oncogenesis 2013;2:e47.

25. Boro A, Bauer D, Born W, Fuchs B. Plasma levels of miRNA-155 as a powerful diagnostic marker for dedifferentiated liposarcoma. Am J Cancer Res 2016;6:544-52.

26. Zhang P, Bill K, Liu J, Young E, Peng T, et al. MiR-155 is a liposarcoma oncogene that targets casein kinase-1α and enhances β-catenin signaling. Cancer Res 2012;72:1751-62.

27. Ugras S, Brill E, Jacobsen A, Hafner M, Socci ND, et al. Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 2011;71:5659-69.

28. Mazzu YZ, Hu Y, Soni RK, Mojica KM, Qin L-X, Agius P, et al. miR-193b-regulated signaling networks serve as tumor suppressors in liposarcoma and promote adipogenesis in adipose-derived stem cells. Cancer Res 2017;77:5728-40.

29. Yu PY, Lopez G, Braggio D, Koller D, Bill KLJ, et al. miR-133a function in the pathogenesis of dedifferentiated liposarcoma. Cancer Cell Int 2018;18:89.

30. Manji GA, Schwartz GK. Managing liposarcomas: cutting through the fat. J Oncol Pract 2016;12:221-7.

31. Kilpatrick SE, Doyon J, Choong PFM, Sim FH, Nascimento AG. The clinicopathologic spectrum of myxoid and round cell liposarcoma: a study of 95 cases. Cancer 1996;77:1450-8.

32. Antonescu CR, Elahi A, Healey JH, Brennan MF, Lui MY, et al. Monoclonality of multifocal myxoid liposarcoma: confirmation by analysis of TLS-CHOP or EWS-CHOP rearrangements. Clin Cancer Res 2000;6:2788-93.

33. Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, et al. Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma. Clin Cancer Res 2001;7:3977-87.

34. Jones RL, Fisher C, Al-Muderis O, Judson IR. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur J Cancer 2005;41:2853-60.

35. Pollack SM, Jungbluth AA, Hoch BL, Farrar EA, Bleakley M, et al. NY-ESO-1 is a ubiquitous immunotherapeutic target antigen for patients with myxoid/round cell liposarcoma. Cancer 2012;118:4564-70.

36. Panagopoulos I, Mertens F, Isaksson M, Mandahl N. A novel FUS/CHOP chimera in myxoid liposarcoma. Biochem Biophys Res Commun 2000;279:838-45.

37. Kuroda M, Ishida T, Takanashi M, Satoh M, Machinami R, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol 1997;151:735-44.

38. Adelmant G, Gilbert JD, Freytag SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem 1998;273:15574-81.

39. Demicco EG, Torres KE, Ghadimi MP, Colombo C, Bolshakov S, et al. Involvement of the PI3K/Akt pathway in myxoid/round cell liposarcoma. Mod Pathol 2012;25:212-21.

40. Lim J, Poulin NM, Nielsen TO. New strategies in sarcoma: linking genomic and immunotherapy approaches to molecular subtype. Clin Cancer Res 2015;21:4753-9.

41. Pollack SM. The potential of the CMB305 vaccine regimen to target NY-ESO-1 and improve outcomes for synovial sarcoma and myxoid/round cell liposarcoma patients. Expert Rev Vaccines 2018;17:107-14.

42. Davidović R, Sopta J, Mandušić V, Krajnović M, Stanojević M, Tulić G, et al. p14(ARF) methylation is a common event in the pathogenesis and progression of myxoid and pleomorphic liposarcoma. Med Oncol 2013;30:682.

43. Oda Y, Yamamoto H, Takahira T, Kobayashi C, Kawaguchi K, et al. Frequent alteration of p16(INK4a)/p14(ARF) and p53 pathways in the round cell component of myxoid/round cell liposarcoma: p53 gene alterations and reduced p14(ARF) expression both correlate with poor prognosis. J Pathol 2005;207:410-21.

44. De Cecco L, Negri T, Brich S, Mauro V, Bozzi F, et al. Identification of a gene expression driven progression pathway in myxoid liposarcoma. Oncotarget 2014;5:5965-77.

45. Borjigin N, Ohno S, Wu W, Tanaka M, Suzuki R, et al. TLS-CHOP represses miR-486 expression, inducing upregulation of a metastasis regulator PAI-1 in human myxoid liposarcoma. Biochem Biophys Res Commun 2012;427:355-60.

46. Bajou K, Maillard C, Jost M, Lijnen RH, Gils A, et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene 2004;23:6986-90.

47. Ghadimi MP, Liu P, Peng T, Bolshakov S, Young ED, et al. Pleomorphic liposarcoma: Clinical observations and molecular variables. Cancer 2011;117:5359-69.

48. Hornick JL, Bosenberg MW, Mentzel T, McMenamin ME, Oliveira AM, et al. Pleomorphic liposarcoma: clinicopathologic analysis of 57 cases. Am J Surg Pathol 2004;28:1257-67.

49. Dalal KM, Kattan MW, Antonescu CR, Brennan MF, Singer S. Subtype specific prognostic nomogram for patients with primary liposarcoma of the retroperitoneum, extremity, or trunk. Ann Surg 2006;24:381-91.

50. Gebhard S, Coindre JM, Michels JJ, Terrier P, Bertrand G, et al. Pleomorphic liposarcoma: clinicopathologic, immunohistochemical, and follow-up analysis of 63 cases: a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 2002;26:601-16.

51. Dei Tos AP. Liposarcomas: diagnostic pitfalls and new insights. Histopathology 2014;64:38-52.

52. Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, et al. Functional copy-number alterations in cancer. PLoS One 2008;3:e3179.

53. Livingston JA, Bugano D, Barbo A, Lin H, Madewell JE, et al. Role of chemotherapy in dedifferentiated liposarcoma of the retroperitoneum: defining the benefit and challenges of the standard. Sci Rep 2017;7:1-8.

54. Singer S, Antonescu CR, Riedel E, Brennan MF. Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma. Ann Surg 2003;238:358-70. discussion 370-1

55. Dalal KM, Antonescu CR, Singer S. Diagnosis and management of lipomatous tumors. J Surg Oncol 2008;97:298-313.

56. Italiano A, Toulmonde M, Cioffi A, Penel N, Isambert N, et al. Advanced well-differentiated/dedifferentiated liposarcomas: role of chemotherapy and survival. Ann Oncol 2012;23:1601-7.

57. Ratan R, Patel SR. Chemotherapy for soft tissue sarcoma. Cancer 2016;18:604-10.

58. McGovern Y, Zhou CD, Jones RL. Systemic therapy in metastatic or unresectable well-differentiated/dedifferentiated liposarcoma. Front Oncol 2017;7:292.

59. Demetri GD, von Mehren M, Jones RL, Hensley ML, Schuetze SM, et al. Efficacy and safety of trabectedin or dacarbazine for metastatic liposarcoma or leiomyosarcoma after failure of conventional chemotherapy: Results of a phase III randomized multicenter clinical trial. J Clin Oncol 2016;34:786-93.

60. Ratan R, Patel SR. Trabectedin and eribulin: where do they fit in the management of soft tissue sarcoma? Curr Treat Options Oncol 2017;18:1-9.

61. Jones RL, Demetri GD, Schuetze SM, Milhem M, Elias A, et al. Efficacy and tolerability of trabectedin in elderly patients with sarcoma: subgroup analysis from a phase 3, randomized controlled study of trabectedin or dacarbazine in patients with advanced liposarcoma or leiomyosarcoma. Ann Oncol 2018;29:1995-2002.

62. Demetri GD, Schöffski P, Grignani G, Blay JY, Maki RG, et al. Activity of eribulin in patients with advanced liposarcoma demonstrated in a subgroup analysis from a randomized phase III study of eribulin versus dacarbazine. J Clin Oncol 2017;35:3433-9.

63. Setola E, Noujaim J, Benson C, Chawla S, Palmerini E, et al. Eribulin in advanced liposarcoma and leiomyosarcoma. Expert Rev Anticancer Ther 2017;17:717-23.

64. Schöffski P, Chawla S, Maki RG, Italiano A, Gelderblom H, et al. Eribulin versus dacarbazine in previously treated patients with advanced liposarcoma or leiomyosarcoma: A randomised, open-label, multicentre, phase 3 trial. Lancet 2016;387:1629-37.

65. Maki RG. Gemcitabine and docetaxel in metastatic sarcoma: past, present, and future. Oncologist 2007;12:999-1006.

66. Pollack SM, Ingham M, Spraker MB, Schwartz GK. Emerging targeted and immune-based therapies in sarcoma. J Clin Oncol 2018;36:125-35.

67. Wilky BA, Jones RL, Keedy VL. The current landscape of early drug development for patients with sarcoma. Am Soc Clin Oncol Educ B [Internet] 2017;37:807-10. Available from: http://meetinglibrary.asco.org/content/174701-199 [Last accessed on 25 Apr 2019].

68. Nathenson MJ, Conley AP, Sausville E. Immunotherapy: a new (and Old) approach to treatment of soft tissue and bone sarcomas. Oncologist 2018;23:71-83.

69. Samuels BL, Chawla SP, Somaiah N, Staddon AP, Skubitz KM, et al. Results of a prospective phase 2 study of pazopanib in patients with advanced intermediate-grade or high-grade liposarcoma. Cancer 2017;123:4640-7.

70. Keung EZ, Wargo JA. The Current Landscape of Immune Checkpoint Inhibition for Solid Malignancies. Surg Oncol Clin N Am 2018.

71. Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg 1891;14:199-220.

72. Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017;18:1493-501.

73. D’Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol 2018;19:416-26.

74. D’Angelo SP, Druta M, Liebner DA, Schuetze S, Somaiah N, et al. Pilot study of NY-ESO-1c259 T cells in advanced myxoid/round cell liposarcoma. J Clin Oncol 2018;36:3005. Available from: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.15_suppl.3005. [Last accessed on 25 Apr 2019].

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/